• Title/Summary/Keyword: Radiation devices

Search Result 500, Processing Time 0.022 seconds

Development of a neural network method for measuring the energy spectrum of a pulsed electron beam, based on Bremsstrahlung X-Ray

  • Sohrabi, Mohsen;Ayoobian, Navid;Shirani, Babak
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.266-272
    • /
    • 2021
  • In the pulsed electron beam generators, such as plasma focus devices and linear induction accelerators whose electron pulse width is in the range of nanosecond and less, as well as in cases where there is no direct access to electron beam, like runaway electrons in Tokamaks, measurement of the electron energy spectrum is a technical challenge. In such cases, the indirect measurement of the electron spectrum by using the bremsstrahlung radiation spectrum associated with it, is an appropriate solution. The problem with this method is that the matrix equation between the two spectrums is an ill-conditioned equation, which results in errors of the measured X-ray spectrum to be propagated with a large coefficient in the estimated electron spectrum. In this study, a method based on the neural network and the MCNP code is presented and evaluated to recover the electron spectrum from the X-ray generated by collision of the electron beam with a target. Multilayer perceptron network showed good accuracy in electron spectrum recovery, so that for the X-ray spectrum with errors of 3% and 10%, the network estimated the electron spectrum with an average standard error of 8% and 11%, on all of the energy intervals.

Fluoroscopic the equipment study in accordance with the entrance surface dose study of patients and practitioners (투시 검사 시 장비에 따른 환자와 시술자의 입사표면선량 연구)

  • Yang, Hae-Doo;Hong, Seon-Sook;Seong, Min-Sook;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • Purpose : Fluoroscopy equipment, depending on the type of changes that occur in the patient's position ESD and study the patient's scatter ray of ESD Practitioners considered a comparative analysis was to evaluate the correct dose. Materials and Methods : HITACHI four overtube type TU-8000 Flat Detector and Under tube C-Arm Philips' Multi Diagnost Eleva with Flat Detector type were measured by. Each devices is a measure of the patient's esd randophantom position in tabel unfors Xi multi funtion then fixed to the abdomen fluoroscopy and 10 seconds, spot was measured three times, practitioners of the incident surface dose by considering the patient's scatter ray of the table for each device in the average human stomach 21cm thickness acrylic phantom ($25cm{\times}25cm$) Place the practitioner position after position randophantom unfors Xi multi funtion in the thyroid and stomach 1 minute by a fixed one-time fluoroscopy and measured. Results : 10 seconds and the patient perspective of the c-arm ESD 1.2 times smaller on the AP and oblique measurements were measured in the 6-13 times smaller. spot positions to changes in the measured three times on the AP of the abdomen, ESD is 18 times smaller c-arm measurements and the oblique measurement was 19-30 times smaller. And 1 minute at practitioners fluoroscopy esd in the thyroid 2.12 times the c-arm, chest 1.75 times less the dose was measured. On the AP, depending on the device, but the lack of dose difference oblique positions of the two devices depending on changes in the area due to changes in both the AP than on the dose increased, the difference in dose between the two devices, the maximum difference was approximately 27 times. Conclusion : Fluoroscopic equipment at the time of inspection in accordance with changes in dose according to the patient and the patient's positions changes, because the area of the scatter ray considering the change of dose measurements be made, and study of the equipment according to the characteristics of the efficiency and the exposure of the patient and practitioner is considered smooth study equipment manufacturers that can be done is to build the system and think that is also important. Various fluoroscopy when you check future changes in many factors of change in dose for the equipment in the laboratory system by considering the scatter ray radiation shielding for the management to take advantage of reckless undertube have been utilized as more exposure Reduction activities can help is considered as the direction.

  • PDF

Evaluations of the Space Dose and Dose Reductions in Patients and Practitioners by Using the C-arm X-ray Tube Shielding Devices Developed in Our Laboratory

  • Kim, Jae Seok;Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Jung, Hai Jo;Hoe, Seong Wook;Son, Jin Hyun;Kang, Byeong Sam
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.241-249
    • /
    • 2016
  • The present study used a digital angiography x-ray device to measure the space dose and exposure dose of patients and practitioners using x-ray tube shielding devices developed in our laboratory. The intent of the study was to reduce the space dose within the test room, and to reduce the exposure dose of patients and practitioners. The patient and practitioner exposure doses were measured in five configurations in a human body model. The glass dosimeter was placed on the eye lenses, thyroid glands, left shoulder, right shoulder, and gonads. The beam was collimated at full size and at a 48% reduction for a comparative analysis of the measurements. The space dose was measured with an ion chamber at distances of 50 cm, 100 cm, and 150 cm from the x-ray tube under the following conditions: no shielding device; a shielding device made of 3-mm-thick lead (Pb) [Pb 3 mm shield], and a shielding device made of 3-mm-thick Pb (outside) and 3-mm-thick aluminum (Al) (inside) [Pb 3 mm+Al 3 mm shield]. The absorbed dose was the lowest when the 3-mm-thick Pb+3-mm-thick Al shield was used. For measurements made with collimated beams with a 48% reduction, the dose was the lowest at $154{\mu}Gy$ when the 3-mm-thick Pb+3-mm-thick Al shield was used, and was $9{\mu}Gy$ lower than the measurements made with no shielding device. If the space dose can be reduced by 20% in all situations where the C-arm is employed by using the x-ray tube shielding devices developed in our laboratory, this is expected to play an important role in reducing the annual exposure dose for patients, practitioners, and assistants.

THE NONDESTRUCTIVE MEASUREMENT OF THE SOLUBLE SOLID AND ACID CONTENTS OF INTACT PEACH USING VIS/NIR TRANSMITTANCE SPECTRA

  • Hwang, I.G.;Noh, S.H.;Lee, H.Y.;Yang, S.B.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.210-218
    • /
    • 2000
  • Since the SSC(soluble solid contents) and titratable acidity of fruit are highly concerned to the taste, the need for measuring them by non-destructive technology such as NIR(Visual and Near-infrared) spectroscopy is increasing. Specially, in order to grade the quality of each fruit with a sorter at sorting and packing facilities, technologies for online measurement satisfying the tolerance in terms of accuracy and speed should be developed. Many researches have been done to develop devices to measure the internal qualities of fruit such as SSC, titratable acidity, firmness, etc. with the VIS(Visual)/NIR(Near Infrared) reflectance spectra. The distributions of the SSC, titratable acidity, firmness, etc. are different with respect to the position and depth of fruit, and generally the VIS/NIR light can interact with fruit in a few millimeters of pathlength, and it is very difficult to measure the qualities of inner flesh of fruit. Therefore, to measure the average concentrations of each quality factor such as SSC and titratable acidity with the reflectance-type NIR devices, the spectra of fruit at several positions should be measured. Recently, the interest about the transmittance-type VIS/NIR devices is increasing. NIR light can penetrate through the fruit about 1/10-1/1,000,000 %. Therefore, very intensive light source and very sensitive sensor should be adopted to measure the transmitted light spectra of intact fruit. The ultimate purpose of this study was to develop a device to measure the transmitted light spectra of intact fruit such as apple, pear, peach, etc. With the transmittance-type VIS/NIR device, the feasibility of measurement of the SSC and titratable acidity in intact fruit cultivated in Korea was tested. The results are summarized as follows; A simple measurement device which can measure the transmitted light spectra of intact fruit was constructed with sample holder, two 500W-tungsten halogen lamps, a real-time spectrometer having a very sensitive CCD array sensor and optical fiber probe. With the device, it was possible to measure the transmitted light spectra of intact fruit such as apple, pear and peach. Main factors affecting the intensity of transmitted light spectra were the size of sample, the radiation intensity of light source and the integration time of the detector. Sample holder should be designed so that direct light leakage to the probe could be protected. Preprocessing method to the raw spectrum data significantly influenced the performance of the nondestructive measurement of SSC and titratable acidity of intact fruit. Representative results of PLS models in predicting the SSC of peach were SEP of 0.558 Brix% and R2 of 0.819, and those in predicting titratable acidity were SEP of 0.056% and R2 of 0.655.

  • PDF

Skin Damage Sustained During Head-and-Neck and Shoulder Radiotherapy Due to the Curvature of Skin and the Use of Immobilization Mask (머리-목 그리고 어깨의 방사선 치료 시 피부곡면과 고정장치로 인한 피부손상연구)

  • Kim, Soo-Kil;Jeung, Tae-Sig;Lim, Sang-Wook;Park, Yeong-Mouk;Park, Dahl
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.86-92
    • /
    • 2010
  • The purpose of this study was to measure curvature contour skin dose using radiochromic film and TLD for a conventional open field. We also attempted to quantify the degradation of skin sparing associated with use of immobilization devices for high energy photon beams and to calculate the skin dose with a help of Monte Carlo (MC) simulation. To simulate head-and-neck and shoulder treatment, a cylindrical solid water phantom 11 cm in diameter was irradiated with 6 MV x-rays using $40{\times}40\;cm^2$ field at 100 cm source axis distance (SAD) to the center of the phantom. Aquaplastic mesh mask was placed on the surface of the cylindrical phantom that mimicked relevant clinical situations. The skin dose profile was obtained by taking measurements from $0^{\circ}$ to $360^{\circ}$ around the circumference of the cylindrical phantom. The skin doses obtained from radiochromic film were found to be 47% of the maximum dose of $D_{max}$ at the $0^{\circ}$ beam entry position and 61% at the $90^{\circ}$ oblique beam position without the mask. Using the mask (1.5 mm), the skin dose received was 59% at $0^{\circ}$ incidence and 78% at $80^{\circ}$ incidence. Skin dose results were also gathered using thin thermoluminescent dosimeters (TLD). With the mask, the skin dose was 66% at $0^{\circ}$ incidence and 80% at $80^{\circ}$ incidence. This method with the mask revealed the similar pattern as film measurement. For the treatments of the head-and-neck and shoulder regions in which immobilization mask was used, skin doses at around tangential angle were nearly the same as the prescription dose. When a sloping skin contour is encountered, skin doses may be abated using thinner and more perforated immoblization devices which should still maintain immoblization.

Analyze for the Quality Control of General X-ray Systems in Capital region (수도권지역 일반촬영 장비의 정도관리 분석)

  • Kang, Byung-Sam;Lee, Kang-Min;Shim, Woo-Yong;Park, Soon-Chul;Choi, Hak-Dong;Cho, Yong-Kwon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.93-102
    • /
    • 2012
  • Thanks to the rapid increase of the interest in the quality control of the General X-ray systems, this research proposes the direction of the quality control through comparing and inspecting the actual condition of the respective quality control in the Clinic, the educational institution and the hospital. The subjects of the investigation are diagnostic radiation equipment's in the clinic, the educational institution and the hospital around the capital. A test of kVp, mR/mAs out put test and reproducibility of the exposure dose, half value layer, an accordance between the light field and the beam alignment test, and lastly reproducibility of the exposure time. Then the mean difference of the percentage, the CV (Coefficient of Variation, CV) and the attenuated curve which are respectively resulted from the above tests are computed. After that we have evaluated the values according to the regulations on the Diagnostic Radiation Equipment Safety Administration regulations. In the case of the clinic and the educational institution, there were 22 general X-ray devices. And 18.2% of the kVp test, 13.6% of the reproducibility of exposure dose test, 9.1% of the mR/mAs out put test, and 13.6% of the HVL (Half Value Layer) test appeared to be improper. In the case of the hospital, however, there were 28 devices. And 7.1% of the reproducibility of exposure dose, 7.1% of the difference in the light field/ beam alignment, and 7.1% of the reproducibility of the exposure time appeared to be improper. According to the investigation, the hospital's quality control condition is better than the condition in the clinic and the educational institution. The quality control condition of the general X-ray devices in the clinic is unsatisfactory compared to the hospital. Thus, it is considered that realizing the importance of the quality control is necessary.

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF

Analyzing the Performance of a Temperature and Humidity Measuring System of a Smart Greenhouse for Strawberry Cultivation (딸기재배 스마트 온실용 온습도 계측시스템의 성능평가)

  • Jeong, Young Kyun;Lee, Jong Goo;Ahn, Enu Ki;Seo, Jae Seok;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.117-125
    • /
    • 2019
  • This study compared the temperature and humidity measured by an aspirated radiation shield (ARS), the accuracy of which has been recently verified, and those measured by a system developed by the parent company (Company A) to investigate and improve the performance of the developed system. The results are as follows. Overall, the two-plate system had a lower radiation shielding effect than the one-plate system but showed better performance results when excluding the effect of strawberry vegetation on the systems. The overall maximum temperature ranges measured by company A's system and the ARS were $20.5{\sim}53.3^{\circ}C$ and $17.8{\sim}44.1^{\circ}C$, respectively. Thus, the maximum temperature measured by company A's system was $2.7{\sim}9.2^{\circ}C$ higher, and the maximum daily temperature difference was approximately $12.2^{\circ}C$. The overall average temperature measured by company A's system and the ARS was $12.4{\sim}38.6^{\circ}C$ and $11.8{\sim}32.7^{\circ}C$, respectively. Thus, the overall average temperature measured by company A's system was $0.6{\sim}5.9^{\circ}C$ higher, and the maximum daily temperature difference was approximately $6.7^{\circ}C$. The overall minimum temperature ranges measured by company A's system and the ARS were $4.2{\sim}28.6^{\circ}C$ and $2.9{\sim}26.4^{\circ}C$, respectively. Thus, the minimum temperature measured by company A's system was $1.3{\sim}2.2^{\circ}C$ higher, and the minimum daily temperature difference was approximately $2.9^{\circ}C$. In addition, the overall relative humidity ranges measured by company A's system and the ARS were 52.9~93.3% and 55.3~96.5%, respectively. Thus, company A's system showed a 2.4~3.2% lower relative humidity range than the ARS. However, there was a day when the relative humidity measured by company A's system was 18.0% lower than that measured by the ARS at maximum. In conclusion, there were differences in the relative humidity measured by the two company's devices, as in the temperature, although the differences were insignificant.

Experimental Study with Respect to Dose Characteristic of Glass Dosimeter for Low-Energy by Using Internal Detector of Piranha 657 (Piranha 657의 Internal Detector를 이용한 저에너지에서 유리선량계의 선량 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Lim, Hyun-Soo;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2012
  • Recently, Glass Dosimeter (GD) with thermoluminescent Dosimeter (TLD) are comprehensively used to measure absorbed dose from diagnostic field to therapy field that means from low energy field to high energy field. However, such studies about dose characteristics of GD, such as reproducibility and energy dependency, are mostly results in high energy field. Because characteristic study for measurement devices of radiation dose and radiation detector is performed using 137Cs and 60Co which emit high energy radiations. Thus, this study was evaluated the linearity according to Piranha dose which measured by changing tube voltage (50kV, 80kV and 100kV which are low energy radiations), reproducibility and reproducibility according to delay time using GD. Measurement of radiation dose is performed using internal detector of Piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Condition of measurement was 25mA, 0.02sec, 2.5mAs, SSD of 100 cm and exposure area with $10{\times}10cm^2$. As above method, GD was exposed to radiation. Sixty GDs were divided into three groups (50kV, 80kV, 100kV), then measured. In this study, GD was indicated the linearity in low energy field as high energy existing reported results. The reproducibility and reproducibility according to delay time were acceptable. In this study, we could know that GD can be used to not only measure the high energy field but also low energy field.

Radiologic Equipment and Technicians according to the Distribution of the Population (인구 분포에 따른 방사선 장비 및 종사자에 관한 고찰)

  • Yoon, Chul-Ho;Choi, Jun-Gu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2009
  • Purpose: The purpose of this paper is to provide basic data in order to systemize the management of demand and supply of radiologic technicians, to pursue a fair regional distribution of educational institutions, and furthermore to keep reasonable medical treatment and fee. This research was carried out through the investigation of radiologic equipments and technicians according to the distribution of the population. Materials and Methods: We compared and analyzed the correlation between regional population, the number of clinics and hospitals, the number of medical imaging devices, and the number of radiologists and radiologic technicians in 5 cities without "Gu" administrative units in 2008. Results: 27,317 radiologic technicians have been produced since the administration of the national qualifying exam for radiologic technicians. About 18,000 radiologic technicians are currently working. There are 39 colleges or universities with Departments of Radiology and the admission quota is 2,120 students excluding one college. The ratio of radiologic equipments to radiologic technicians is 2.6 to 1. Conclusion: There is a dilemma in which some radiologic technicians fail to find appropriate jobs while some clinics or hospitals are in need of radiologic technicians. This dilemma is due to unreasonable regional discrepancies in pay system and welfare situation, and excessive profit-oriented recruiting system of clinics and hospitals. The increase of students of Radiologic Departments and approval of additional departments will end up with producing superfluous high academic degree holders, which is on the contrary to the government policy to produce more job opportunities. So the policy of increasing Radiologic Departments should be reconsidered.

  • PDF