• Title/Summary/Keyword: Radiation communication

Search Result 783, Processing Time 0.021 seconds

The Public Impression of Radiation as a Product of Science Communication (방사선과 과학커뮤니케이션: 성공과 실패 -북한 핵실험 관련 사례분석-)

  • Kim, Hak-Soo;Oh, Mi-Young;Choi, Jinmyeung;Ha, Hyo-Suk
    • Journal of Radiation Industry
    • /
    • v.2 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • The purpose of this study is to observe how the public impression of radiation is changing over the North Korea's nuclear bomb test. We found that the nuclear bomb test brought more negative impressions of radiation, but, in one year, more positive ones prevailed as in the pre-bomb-test. Those positive impressions were found to be composed of useful and positive elements mostly relative to health care. This suggests that we need to apply radiation (fusion) technology to solving everyday life problems in order to bring more positive impressions of radiation.

Developement of Radiation Measuring System using Wireless Communication (무선통신을 이용한 방사선측정 시스템 개발)

  • Lee, Bong-Jae;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.85-95
    • /
    • 1995
  • Radiation measuring system using wireless communication method with single channel has been diveloped and tested. In this system, radiation signals from GM tube are transformed into digital pulses in pulse processing circuit and modulated in FSK (frequency shift keying) circuit for digital communication and then wirelessly transmitted to a receiving unit. The digital pulses received are then demodulated in FSK circuit and converted into radiation dose/dose rate in the data acquisition unit to display on the screen of a personal computer. The performance of this system was evaluated by using both a pulse generator and a standard radiation source(Cs-137). In both cases, digital pulses with 5V were observed in pulse processing circuit without distortion of their shape through wireless communication system. The experimental results of radiation measurement by this system after several test-irradiation of GM detector to a standard radiation source(Cs-137), showed good agreement with irradiation dose rate within 10% difference, and proved that this system could be effectively utillized as radiation measuring instrument. It is expected that this wireless radiation measuring system developed for the first time in Korea, can be used as a radiation monitor as well as a personal dosimeter if we can further improve this system to adopt wireless multichannel communication system.

  • PDF

Advances in gamma radiation detection systems for emergency radiation monitoring

  • Kumar, K.A. Pradeep;Sundaram, G.A. Shanmugha;Sharma, B.K.;Venkatesh, S.;Thiruvengadathan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2151-2161
    • /
    • 2020
  • The study presents a review of research advancements in the field of gamma radiation detection systems for emergency radiation monitoring, particularly two major sub-systems namely (i) the radiation detector and (ii) the detection platform - air-borne and ground-based. The dynamics and functional characteristics of modern radiation detector active materials are summarized and discussed. The capabilities of both ground-based and aerial vehicle platforms employed in gamma radiation monitoring are deliberated in depth.

A Discussion for Alteration of the Radiation Issues Based on the Clipping Analyses of Radiation Articles Reported in Korea

  • Kim, Joo Yeon;Youn, Dol Mi;Yoo, Ji Yup;Park, Tai Jin
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.161-165
    • /
    • 2016
  • Background: Radiation accidents having occurred in recent containing the accident in Fukushima nuclear power plants of Japan were resulted to the increase in some public concern, anxiety and confusion for radiation or nuclear safety. The public anxiety for radiation is not being decreased though the announcements done in radiation research institutes in Korea. Therefore, this study aims at providing an effective system for radiation publicity to the public members by the clipping analysis for the radiation articles reported in the media. And, the relation between those radiation issues and the radiation perception to the public members is analyzed. Materials and Methods: The radiation articles reported by them in 2013 and 2014 have been collected, and they are then classified with the article characteristic, field and tendency. Classified articles have been reviewed by dividing as two year. The 210 articles have been compared for their tendencies, characteristics and fields by year reported, and their characteristic comparison by reported year are then reviewed. Results and Discussion: Though the frequency that the radiological accidents have occurred in worldwide is far low compared to the accidental frequencies occurred in the general industrial fields, the radiation perception is being still deteriorated because of its special problem, which is defined as exposure, contamination or radioactivity, about radiation. The basic principles for radiation communication were suggested for preventing some unnecessary misunderstanding due to the variation of understanding for radiation issues. Conclusion: It is necessary to perform a variety of strategies for the publicity in improving the radiation perception, to build a relationship with the press or the media and then to consistently interact with them. Radiation communication must be performed by radiation experts or complete charge department, and must be consistently performed and be taken predictable patterns.

Antenna Radiation Efficiency of the Korean NDGPS Based on Radiation Power Measurements

  • Kim, Young-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • The differential global positioning system (DGPS) transmits a GPS enhancement signal using a top-loaded monopole antenna in the medium frequency range. The top-loaded antenna in the medium frequency band can attain a radiation efficiency on the order of 10%. The antenna ground plane characteristics affect the antenna radiation efficiency. To improve the radiation efficiency, it is necessary to install the antenna on a ground plane with large enough physical dimensions and good conductivity. The antenna radiation efficiency is a primary factor in determining the DGPS service area. The service area of the DGPS using a medium frequency band is dominantly affected by the antenna radiation efficiency. To determine antenna radiation efficiencies accurately, the antenna radiation efficiencies of DGPS are deduced from the propagation power in this paper. Based on the deduced antenna radiation efficiencies, the service area for the Korean nationwide-DGPS is analyzed and evaluated.

Ionizing Radiation Sensitivity Analysis of the Structural Characteristic for the MOS Capacitors (MOS 커패시터의 구조별 전리방사선 감도 특성 분석)

  • Hwang, Young-Gwan;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.963-968
    • /
    • 2013
  • Ionizing Radiation effects on MOS devices provide useful information regarding the behavior of MOS based devices and circuits in the electronic instrumentation parts and instructive data for making the high sensitive sensors. The study presents the results of the analysis on the structural characteristics of MOS capacitor for sensing the ionizing radiation effect. We performed numerical modeling of Ionizing-radiation effect on MOS capacitor and simulation using Matlab program. Also we produced MOS capacitors and obtained useful data through radiation experiment to analyse the characteristic of ionizing radiation effect on MOS capacitor. Increasing the thickness of MOS capacitor's oxide layer enhanced the sensitivity of MOS capacitor under irradiation condition, but the sensitivity of irradiated MOS capacitor is uninfluenced by the area of MOS capacitor. The high frequency capacitance of the MOS capacitor is found to be strongly affected by incident ionizing radiation.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

Performance Analysis of FSO Communication Systems with Photodetector Multiplexing

  • Feng, Jianfeng;Zhao, Xiaohui
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.440-455
    • /
    • 2017
  • In this paper, we carry out a performance analysis of a two-user free-space optical (FSO) communication system with photodetector multiplexing, in which the two users are defined as the primary user (PU) and secondary user (SU). Unlike common single-user FSO systems, our photodetector multiplexing FSO system deploys a shared detector at the receiver and enables PU and SU to send their own data synchronously. We conduct the performance analysis of this FSO system for two cases: (1) in the absence of background radiation, and (2) in the presence of background radiation. Decision strategies for PU and SU are presented according to the two scenarios above. Exact and approximate conditional symbol-error probability (SEP) expressions for both PU and SU are derived, in an ideal channel with no fading. Average SEP expressions are also presented in the no-background-radiation scenario. Additionally, in some particular cases where the power ratio tends to 0.5 or 1, approximate SEP expressions are also obtained. Finally, numerical simulations are presented under different conditions, to support the performance analysis.

Improvement of Broadband Radiated Emission Noise in Military Tactical Vehicle by Using Additional Alternator in Engine (엔진 발전기 추가 적용을 통한 군(軍) 지휘·지원차량의 광대역 전자파 방사 노이즈 개선)

  • Seo, Suk Ho;Ku, Ki Beom;Kim, Ji Hoon;Oh, Dae San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.397-404
    • /
    • 2020
  • The military tactical vehicle currently being operated is manufactured by improving the parts of commercial vehicles. In addition, the power supply system is applied by installing a separate converter inside the communication room to secure the operating environment of communication equipment. On the other hand, due to electromagnetic radiation noise, there are problems in frequent noise and deterioration in communication sensitivity during wireless communication in vehicles. To improve these, an advanced power supply system is applied, which is also equipped with an alternator to receive power required for communication equipment reducing broadband electromagnetic radiation noise. An additionally installed alternator, which is located in the engine room, is separated from the communication room where communication equipment is operated and is expected to reduce the effect of electromagnetic radiation noise generated from the power supply system. To verify these, a broadband radiation test was performed on a previous and advanced one. As a result, the broadband radiation noise of vehicles with an applied advanced power supply system satisfied all of the domestic vehicle safety standards and reduced in most of the sections except for some frequencies compared to previous typed vehicles. In particular, broadband radiation noise was decreased by up to 10.751 dB𝜇V/m in the vertical sections in 170 to 200 MHz on the right side of the vehicle.

Measurement and Analysis of the Korean NDGPS Radiation Spectrum

  • Kim, Young-Wan;Jee, Suk-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.225-230
    • /
    • 2012
  • The Korean nationwide differential global positioning system (NDGPS) reference station transmits a global positioning system (GPS) enhancement signal using minimum shift keying modulation with a 200 bps data rate. The ocean-based DGPS covers the service area of 100 NM with 300 W output power; on the other hand, the land-based DGPS transmits the output power of 500 W, which covers the service area of 100 km. The DGPS reference stations with high output power can radiate spurious signals, which may act as interference sources affecting the other DGPS reference stations or the wireless ground stations that utilize the medium frequency band. In this paper, the radiation spectrums of the DGPS reference stations are measured and analyzed in the spurious domain. The DGPS radiation spectrums are evaluated from the perspective of the interference effect.