• Title/Summary/Keyword: Radiation Shielding Materials

Search Result 236, Processing Time 0.034 seconds

Possibility & Limitation of 1D Nano Scale Electron Shielder (나노 구조물을 이용한 전자선 차폐 가능성과 한계 조사)

  • Ahn, Sung-Jun;Lee, Bum-Su;Kim, Chong-Yeal
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.109-112
    • /
    • 2007
  • The possibility and limitation of one dimensional nano scale electron shielder is briefly discussed. A Nano scale electron shielder will reduce the weight and size of shielding materials. However, practical application still requires further research. In this work, we discuss general problems related to nano scale electron shielder, by taking an arbitrary one dimensional potential barrier as an example.

  • PDF

Evaluation of the Apron Effectiveness during Handling Radiopharmaceuticals in PET/CT Work Environment (PET/CT 업무 환경에서 선원 취급 시 Apron의 실효성 평가)

  • Cho, Yong-In;Ye, Soo-Young;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Health professionals in nuclear medicine were known that they get high radiation exposure. To reduce radiation exposure, using shielding materials is needed. In this study, we analyzed the shielding effect about apron during 18F-FDG treatment by using simulation based on Monte Carlo techniques and actual measurement. As a result, absorbed dose distribution of organ varies with handling position of the source. Dose reduction ratio by lead thickness of apron tended to decease, when handling position of the source come close to organ and away from radiation source for simulation. In the case of actual measurement with the dosimetry device, It showed that mean spatial dose distribution was different due to characteristics of dosimetry device. However, spatial dose rate was exponentially reduced according to distance with increasing lead content.

Comparison of Physics Model for 600 MeV Protons and 290 MeV·n-1 Oxygen Ions on Carbon in MCNPX

  • Lee, Arim;Kim, Donghyun;Jung, Nam-Suk;Oh, Joo-Hee;Oranj, Leila Mokhtari;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Background: With the increase in the number of particle accelerator facilities under either operation or construction, the accurate calculation using Monte Carlo codes become more important in the shielding design and radiation safety evaluation of accelerator facilities. Materials and Methods: The calculations with different physics models were applied in both of cases: using only physics model and using the mix and match method of MCNPX code. The issued conditions were the interactions of 600 MeV proton and $290MeV{\cdot}n^{-1}$ oxygen with a carbon target. Both of cross-section libraries, JENDL High Energy File 2007 (JENDL/HE-2007) and LA150, were tested in this calculation. In the case of oxygen ion interactions, the calculation results using LAQGSM physics model and JENDL/HE-2007 library were compared with D. Satoh's experimental data. Other Monte Carlo calculations using PHITS and FLUKA codes were also carried out for further benchmarking study. Results and Discussion: It was clearly found that the physics models, especially intra-nuclear cascade model, gave a great effect to determine proton-induced secondary neutron spectrum in MCNPX code. The variety of physics models related to heavy ion interactions did not make big difference on the secondary particle productions. Conclusion: The variations of secondary neutron spectra and particle transports depending on various physics models in MCNPX code were studied and the result of this study can be used for the shielding design and radiation safety evaluation.

A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code

  • Tekin, H.O.;ALMisned, Ghada;Issa, Shams A.M.;Zakaly, Hesham M.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3317-3323
    • /
    • 2022
  • Half Value Layer calculations theoretically need prior specification of linear attenuation calculations, since the HVL value is derived by dividing ln(2) by the linear attenuation coefficient. The purpose of this study was to establish a direct computational model for determining HVL, a vital parameter in nuclear radiation safety studies and shielding material design. Accordingly, a typical gamma-ray transmission setup has been modeled using MCNPX (version 2.4.0) general-purpose Monte Carlo code. The MCNPX code's INPUT file was designed with two detection locations for primary and secondary gamma-rays, as well as attenuator material between those detectors. Next, Half Value Layer values of some well-known gamma-ray shielding materials such as lead and ordinary concrete have been calculated throughout a broad gamma-ray energy range. The outcomes were then compared to data from the National Institute of Standards and Technology. The Half Value Layer values obtained from MCNPX were reported to be highly compatible with the HVL values obtained from the NIST standard database. Our results indicate that the developed INPUT file may be utilized for direct computations of Half Value Layer values for nuclear safety assessments as well as medical radiation applications. In conclusion, advanced simulation methods such as the Monte Carlo code are very powerful and useful instruments that should be considered for daily radiation safety measures. The modeled MCNPX input file will be provided to the scientific community upon reasonable request.

Calculation of gamma buildup factors for point sources

  • Kiyani, Abouzar;Karami, Abbas Ali;Bahiraee, Marziye;Moghadamian, Hossein
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Objective of this study is to calculate gamma buildup factors for pointed and isotropic gamma sources in depleted uranium, uranium dioxide, natural uranium, tin, water and concrete using MCNP4C code. The thickness of the media ranges from 0.5 to 10 mean-free-path (mfp) and gamma energy ranges from 0.5 to 10 MeV. Owing to the outstanding accuracy of MCNP in calculation involving gamma interaction, results fairly match those reported previously. The maximum relative error is 2%.

Feasibility study of spent fuel internal tomography (SFIT) for partial defect detection within PWR spent nuclear fuel

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Hyun Joon Choi;Hakjae Lee;Yong Hyun Chung;Chul Hee Min
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2412-2420
    • /
    • 2024
  • The International Atomic Energy Agency (IAEA) mandates safeguards to ensure non-proliferation of nuclear materials. Among inspection techniques used to detect partial defects within spent nuclear fuel (SNF), gamma emission tomography (GET) has been reported to be reliable for detection of partial defects on a pin-by-pin level. Conventional GET, however, is limited by low detection efficiency due to the high density of nuclear fuel rods and self-absorption. This paper proposes a new type of GET named Spent Fuel Internal Tomography (SFIT), which can acquire sinograms at the guide tube. The proposed device consists of the housing, shielding, C-shaped collimator, reflector, and gadolinium aluminum gallium garnet (GAGG) scintillator. For accurate attenuation correction, the source-distinguishable range of the SFIT device was determined using MC simulation to the region away from the proposed device to the second layer. For enhanced inspection accuracy, a proposed specific source-discrimination algorithm was applied. With this, the SFIT device successfully distinguished all source locations. The comparison of images of the existing and proposed inspection methods showed that the proposed method, having successfully distinguished all sources, afforded a 150 % inspection accuracy improvement.

Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy (전뇌 방사선치료 시 치료방법에 따른 두피선량평가)

  • Jang, Joon-Yung;Park, Soo-Yun;Kim, Jong-Sik;Choi, Byeong-Gi;Song, Gi-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • Purpose: Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Materials and Methods: Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). Results: When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Conclusion: Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  • PDF

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon;Jisu Kim;Heejun Chung;Sung-Woo Kwak;Kyung Taek Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3506-3513
    • /
    • 2023
  • In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

Possibility & Limitation of 1D Nano Scale Electron Shielder (나노 구조물을 이용한 전자선 차폐 가능성과 한계)

  • Ahn, Sung-Jun;Lee, Bum-Su;Kim, Chong-Yeal;Yang, O-Bong;Shin, Hyung-Sik
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.301-306
    • /
    • 2005
  • The possibility and limitation of one dimensional nano scale electron shielder is briefly discussed. A Nano scale electron shielder will reduce the weight and size of shielding materials. However, practical application still requires further research. In this work, we discuss general problems related to nano scale electron shielder, by taking an arbitrary one dimensional potential barrier as an example.

  • PDF

A Study on the Effect of FFF 3D Printer Nozzle Size and Layer Height on Radiation Shield Fabrication (FFF방식의 3D프린터 노즐 크기와 층 높이가 방사선 차폐체 제작에 미치는 영향에 관한 연구)

  • Yoon, Joon;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.891-898
    • /
    • 2020
  • As the problem of shields made of lead has recently emerged, research on replacement shields is essential, and studies on the manufacture of diagnostic X-ray shields with 3D printers are also being actively conducted. Recently, with the development of metal mixed filaments, it has become possible to manufacture shielding materials easily, but studies on the nozzle size and output setting of 3D printers are insufficient. Therefore, this study aims to compare and analyze the results through a shielding rate experiment using a brass filament and a 3D printer, outputting the shield according to the nozzle size and layer height, and using a diagnostic radiation generator. The nozzle size was changed to 0.4, 0.8 mm, layer height 0.1, 0.2, 0.3, 0.4 mm, and output. The shielding rate test was fixed at 40 mAs, and the shielding rate was analyzed by experimenting with 60, 80, and 100 kVp, respectively. As a result of the analysis, it was analyzed that the printing time could be reduced to 1/10 according to the nozzle size and the layer height, and the shielding rate could be increased by 1% or more.