• Title/Summary/Keyword: Radiation Safety Management

Search Result 341, Processing Time 0.025 seconds

Applicability of abrasive waterjet cutting to irradiated graphite decommissioning

  • Francesco Perotti ;Eros Mossini ;Elena Macerata;Massimiliano Annoni ;Michele Monno
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2356-2365
    • /
    • 2023
  • Characterization, dismantling and pre-disposal management of irradiated graphite (i-graphite) have an important role in safe decommissioning of several nuclear facilities which used this material as moderator and reflector. In addition to common radiation protection issues, easily volatizing long-lived radionuclides and stored Wigner energy could be released during imprudent retrieval and processing of i-graphite. With this regard, among all cutting technologies, abrasive waterjet (AWJ) can successfully achieve all of the thermo-mechanical and radiation protection objectives. In this work, factorial experiments were designed and systematically conducted to characterize the AWJ processing parameters and the machining capability. Moreover, the limitation of dust production and secondary waste generation has been addressed since they are important aspects for radiation protection and radioactive waste management. The promising results obtained on non-irradiated nuclear graphite blocks demonstrate the applicability of AWJ as a valid technology for optimizing the retrieval, storage, and disposal of such radioactive waste. These activities would benefit from the points of view of safety, management, and costs.

Development of Internal Dose Assessment Procedure for Workers in Industries Using Raw Materials Containing Naturally Occurring Radioactive Materials

  • Choi, Cheol Kyu;Kim, Yong Geon;Ji, Seung Woo;Koo, Boncheol;Chang, Byung Uck;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.291-300
    • /
    • 2016
  • Background: It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. Materials and Methods: The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. Results and Discussion: The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are $10Bq{\cdot}g^{-1}$ for $^{40}K$ and $1Bq{\cdot}g^{-1}$ for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups ( < 0.1 mSv, 0.1-0.3 mSv, and > 0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels ( < 0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and > 1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. Conclusion: The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

Radon Removal Efficiency of Activated Carbon Filter from Coconut (코코넛 기반 활성탄 필터의 라돈 제거 효율)

  • Yun-Jin Ahn;Gi-Sub Kim;Tae-Hwan Kim;Sang-Rok Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences plans to produce 225Ac, a therapeutic radio-pharmaceutical for precision oncology, such as prostate cancer. Radon, a radioactive gas, is generated by radium, the target material for producing 225Ac. The radon concentration is expected to be about 2000 Bq·m-3. High-concentration radon-generating facilities must meet radioactive isotope emission standards by lowering the radon concentration. However, most existing studies concerning radon removal using activated carbon filters measured radon levels at concentrations lower than 1000 Bq·m-3. This study measured 222Rn removal of coconut-based activated carbon filter under a high radon concentration of about 2000 Bq·m-3. The 222Rn removal efficiency of activated carbon impregnated with triethylenediamine was also measured. As a result, the 222Rn removal amount of the activated carbon filter showed sufficient removal efficiency in a 222Rn concentration environment of about 2000 Bq·m-3. In addition, despite an expectation of low radon reduction efficiency of Triethylenediamine-impregnated activated carbon, it was difficult to confirm a significant difference in the results. Therefore, it is considered that activated carbon can be used as a radioisotope exhaust filter regardless of whether or not Triethylenediamine is impregnated. The results of this study are expected to be used as primary data when building an air purification system for radiation safety management in facilities with radon concentrations of about 2000 Bq·m-3.

A Method for Operational Safety Assessment of a Deep Geological Repository for Spent Fuels

  • Jeong, Jongtae;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.63-74
    • /
    • 2020
  • The operational safety assessment is an important part of a safety case for the deep geological repository of spent fuels. It consists of different stages such as the identification of initiating events, event tree analysis, fault tree analysis, and evaluation of exposure doses to the public and radiation workers. This study develops a probabilistic safety assessment method for the operational safety assessment and establishes an assessment framework. For the event and fault tree analyses, we propose the advanced information management system for probabilistic safety assessment (AIMS-PSA Manager). In addition, we propose the Radiological Safety Analysis Computer (RSAC) program to evaluate exposure doses to the public and radiation workers. Furthermore, we check the applicability of the assessment framework with respect to drop accidents of a spent fuel assembly arising out of crane failure, at the surface facility of the KRS+ (KAERI Reference disposal System for SNFs). The methods and tools established through this study can be used for the development of a safety case for the KRS+ system as well as for the design modification and the operational safety assessment of the KRS+ system.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

Effect Evaluation of Forest Fire on Governor Station (정압기지에 대한 산불화재 영향평가)

  • Jang, Seo-Il;Char, Soon-Chul;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.49-57
    • /
    • 2007
  • This Study is to suggest a method of effect evaluation of forest fire on governor station in shrub land. Theoretically, to evaluate effects of forest fire, it is combined that Spread Rate of Forest Fire, Flame Model, and Thermal Radiation Effects Model; i.e. a travel time of forest fire is calculated by Spread Rate of Forest Fire, fire-line intensity is calculated by Flame Model, and effects of fire-line intensity is affected by Thermal Radiation Effects Model. With the aforementioned method, we could carry out the effect evaluation of forest fire on governor station in shrub land and could distinguish scenarios to need protection plan from all scenarios.

Annual Statistics of Radiation Therapy -1990- (방사선 치료 전국 통계 -1990-)

  • 대한치료방사선과학회
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.361-367
    • /
    • 1991
  • This paper on the status of radiotherapy machine and related facilities, clinical activities and radiation safety management is based on the statistical data which collected through the questionaire sent to a total number of 37 hospitals holding the Department of Therapeutic Radiology in Korea. It is true that the quality of instruments installed in the hospitals equal to that of the instrument in the industrialized conuntries' hospitals. But the clinical specialists and physicists who can utilize such instruments fall short of the required number, which might be a main factor in hindering the development of therapeutic radiology of Korea. According to the nation-wide cancer statistics, we can estimate the number of annual cancer patients as 45,000 to 50,000. As a result, probably around 25,000 should receive radiation therapy. It is expected that in the future the number of cancer patients to whom radiation therapy should be applied will become twice as much as that of the cancer patients in 1990. Given such a condition, the problem facing the Korean Society of Therapeutic Radiology now is to increase the number of medical doctors and physicists.

  • PDF

Application of terahertz spectroscopy/imaging technology for food quality and safety management (식품의 품질 및 안전 관리를 위한 테라헤르츠 분광/영상 기술의 응용)

  • Lee, Sang Yoo;Woo, So Young;Chun, Hyang Sook
    • Food Science and Industry
    • /
    • v.51 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Terahertz (THz) represents the portion of the electromagnetic radiation between the microwave and the infrared region and is within the frequency range of 0.1-10 THz. The ability of THz waves to pass through a wide variety of packaging materials, combined with their ability to characterize the molecular structure of many substances makes it an attractive tool for the application of food quality and safety management. This review provides current information on application of THz spectroscopy/imaging technology for food quality and safety management. The THz spectroscopy/imaging technology has been shown to be useful for detecting foreign bodies, vitamin/moisture, pesticides, antibiotics, melamine etc. However, major barriers to the adoption of THz spectroscopy/imaging for food quality and safety management include THz signal loss in heterogeneous food matrices, high costs of sources and detectors, and absence of a library for the wide group of food compounds. Further research is needed to overcome these barriers.

A Study on the Radiation Dose Managements in the Nuclear Medicine Department (핵의학과에서 방사선 피폭관리 실태에 대한 조사 연구)

  • Lim, Chang-Seon;Kim, Se-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1760-1765
    • /
    • 2009
  • After administration of a radiopharmaceutical, the patient remains radioactive for hours or even days, representing a source of potential radiation exposure. Thus, including the personnel who are occupationally exposed to ionizing radiation, radiation exposure must be managed for members of the public, in particular for people accompanying patients. In this study we investigated radiation exposure dose management in the nuclear medicine departments at seven general hospitals. Two of them had no radiation safety considerations for patient transporters, sanitation workers and the like. And they all were careless of radioprotection for people accompanying patients. The average dose rate to people accompanying patients from radioactive patients just before a bone scan was 25.60 ${\mu}$Sv h-1. This is higher than 20 ${\mu}$Sv $h^{-1}$which is the annual public dose limit for temporary use. Therefore radiation dose measurement and risk assessment of patient transporters, sanitation workers and the like should be performed. And the nuclear medicine technologist should provide advices on the radiation safety to patient transporters, sanitation workers, people accompanying patients and so on. To ensure the radiation safety for people accompanying patients, it is required to restrict the patient's access to his relatives, friends and other patients or isolate patients.