• 제목/요약/키워드: Radiation Properties

검색결과 1,335건 처리시간 0.025초

Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester

  • Can, Omer;Belgin, Ezgi Eren;Aycik, Gul Asiye
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1642-1651
    • /
    • 2021
  • In this study, isophtalic neopentyl glycol polyester (NPG-PES) based composites with different loading ratios of pure tungsten metal (W), tungsten (VI) oxide (WO3), tungsten boron (WB) and tungsten carbide (WC) composites were prepared as alternative shielding materials for ionizing electromagnetic radiation (IEMR) shielding. Structural characterizations of the composites were done. Gamma spectrometric analysis of composites for 80-2000 keV energy range was performed and their usability as IEMR shielding was discussed. As a result, the produced composites showed a shielding performance of 60-100% of the lead (the most widely used IEMR shielding material) depending on the reinforcement material, reinforcement loading rate and experimental conditions. Thus, it was reported that produced composites could be an alternative to lead shieldings that have several disadvantages as toxic properties, difficulty of processing and inelasticity.

Physical and γ-ray shielding properties of Vietnam's natural stones: An extensive experimental and theoretical study

  • Ta Van Thuong;O.L. Tashlykov;A.M. Shironina;I.P. Voronin;E.V. Kuvshinova;D.O. Pyltsova;E.I. Nazarov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1932-1940
    • /
    • 2024
  • The current work deals with investigation of the gamma ray shielding properties for various natural stones from Vietnam to be applied in the radiation shielding applications. The physical and chemical properties affecting the γ-ray shielding performance were examined. The MH-300A density meter was utilized to measure the density (ρ, g/cm3) of stone samples, as well as the chemical composition of Vietnamese natural stones was measured using the X-ray fluorescence analyzer (Olympus X-5000). The study shows that the increase in Fe + Ca concentrations within the stone samples increases their density (from 2.48 to 2.86 g/cm3) accompanied with a reduction in the porosity (Φ, %) (from 8.23 to 0.15%) and water absorption (K, %) (from 3.42 to 0.05%) factors. Additionally, the increase in Fe + Ca concentrations increases the linear attenuation coefficient (μ, cm-1) of the studied stones, where the Vietnamese marble stone (M 3.1) with the highest Fe + Ca concentration (65.97 wt%) has the highest linear attenuation coefficient which varied between 3.781 and 0.155 cm-1 with raising the gamma ray energy between 0.040 and 1.332 MeV.

Effects of Irradiation Temperature on the Sensory Quality Improvement of Gamma-irradiated Ganjang-gejang, Korean Traditional Marinated Raw Crab Portunus trituberculatus in Soybean Sauce

  • Park, Jae-Nam;Byun, Eui-Baek;Han, In-Jun;Song, Beom-Seok;Sohn, Hee-Sook;Park, Sang-Hyun;Byun, Eui-Hong;Yoon, Minchul;Sung, Nak-Yun
    • Fisheries and Aquatic Sciences
    • /
    • 제18권2호
    • /
    • pp.115-121
    • /
    • 2015
  • This study was conducted to confirm quality properties of sterilized Ganjang-gejang (marinated crab Portunus trituberculatus) with Korean soy sauce using by gamma irradiation and to improve quality of sterilized Ganjang-gejang. The Ganjang-gejang was irradiated at dose of 3, 6, 9, 12, and 15 kGy by gamma irradiation and there was evaluated in microbiological, physicochemical, and sensory properties. Total aerobic bacteria and fungi contents of non-irradiated samples were about 6 and 4 log CFU/g level, respectively. Gamma-irradiated samples at above 9 kGy did not contain aerobic bacteria or fungi at detection limit less than 2 log CFU/g, but sensory scores were significantly decreased depending on the irradiation dose. To improve the sensory qualities of gamma-irradiated Ganjang-gejang, the temperature was adjusted during sample irradiation. When samples were irradiated under freezing temperatures, especially on dry ice, the TBARS and the deterioration of sensory qualities of Ganjan-Gejang were reduced. Different odor patterns were observed among samples, as observed using electronic nose analysis system. The results of this study indicated that treatment with irradiation under low temperatures may help to preparing high-quality Ganjang-gejang.

반발 입자 군집 최적화 알고리즘을 이용한 표면복사 물성치의 역추정에 관한 연구 (Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm)

  • 이균호;김기완
    • 대한기계학회논문집B
    • /
    • 제38권9호
    • /
    • pp.747-755
    • /
    • 2014
  • 광자(Photon)이나 전자기파(Electromagnetic Wave) 등의 형태로 직접 열을 전달하는 특징을 가지고 있는 복사열전달은 중간 매질의 열전달 관여여부에 따라 표면복사(Surface Radiation)와 기체복사(Gas Radiation)의 형태로 구분될 수 있다. 본 연구에서는 원통 형상에서의 표면복사에 대해 미지의 복사물성치들을 역해석 방법을 이용해 역추정하였다. 이때, 효율적인 역해석을 위해 반발 입자 군집 최적화(Repulsive Particle Swarm Optimization, RPSO) 알고리즘을 역해석 기법으로 채택하였다. 이로부터 얻은 해의 수렴성과 정확도 등을 기존의 유전알고리즘(GA) 결과와 비교해 봄으로써, 표면복사 현상에 대한 역해석의 적용 가능성을 고찰하고자 하였다.

RADIATION-INDUCED DISLOCATION AND GROWTH BEHAVIOR OF ZIRCONIUM AND ZIRCONIUM ALLOYS - A REVIEW

Effect of Thermal Aging on Microstructure and Mechanical Properties of China Low-Activation Martensitic Steel at 550℃

  • Wang, Wei;Liu, Shaojun;Xu, Gang;Zhang, Baoren;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.518-524
    • /
    • 2016
  • The thermal aging effects on mechanical properties and microstructures in China low-activation martensitic steel have been tested by aging at $550^{\circ}C$ for 2,000 hours, 4,000 hours, and 10,000 hours. The microstructure was analyzed by scanning and transmission electron microscopy. The results showed that the grain size and martensitic lath increased by about $4{\mu}m$ and $0.3{\mu}m$, respectively, after thermal exposure at $550^{\circ}C$ for 10,000 hours. MX type particles such as TaC precipitated on the matrix and Laves-phase was found on the martensitic lath boundary and grain boundary on aged specimens. The mechanical properties were investigated with tensile and Charpy impact tests. Tensile properties were not seriously affected by aging. Neither yield strength nor ultimate tensile strength changed significantly. However, the ductile-brittle transition temperature of China low-activation martensitic steel increased by $46^{\circ}C$ after aging for 10,000 hours due to precipitation and grain coarsening.

Physical modeling of dust polarization spectrum by RAT alignment and disruption

  • Lee, Hyeseung;Hoang, Thiem
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.38.1-38.1
    • /
    • 2021
  • Dust polarization depends on the physical and mechanical properties of dust, as well as the properties of local environments. To understand how dust polarization varies with grain mechanical properties and the local environment, in this paper, we model the wavelength-dependence polarization of starlight and polarized dust emission by aligned grains by simultaneously taking into account grain alignment and rotational disruption by radiative torques (RATs). We explore a wide range of the local radiation field and grain mechanical properties characterized by tensile strength. We find that the maximum polarization and the peak wavelength shift to shorter wavelengths as the radiation strength U increases due to the enhanced alignment of small grains. Grain rotational disruption by RATs tends to decrease the optical-near infrared polarization but increases the ultraviolet polarization of starlight due to the conversion of large grains into smaller ones. In particular, we find that the submillimeter (submm) polarization degree at 850㎛(P850) does not increase monotonically with the radiation strength or grain temperature (Td), but it depends on the tensile strength of grain materials. Our physical model of dust polarization can be tested with observations toward star-forming regions or molecular clouds irradiated by a nearby star, which have higher radiation intensity than the average interstellar radiation field. Finally, we compare our predictions of the P850-Td relationship with Planck data and find that the observed decrease of P850 with Td can be explained when grain disruption by RATs is accounted for, suggesting that interstellar grains unlikely to have a compact structure but perhaps a composite one. The variation of the submm polarization with U (or Td)can provide a valuable constraint on the internal structures of cosmic dust

  • PDF

Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications

  • Aboalatta, A.;Asad, J.;Humaid, M.;Musleh, H.;Shaat, S.K.K.;Ramadan, Kh;Sayyed, M.I.;Alajerami, Y.;Aldahoudi, N.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3058-3067
    • /
    • 2021
  • Sodium zinc borate glasses doped with dysprosium and modified with different concentrations of barium oxide (0-50 mol %) were fabricated using the melting quenching technique. The structural properties of the prepared glass systems were characterized using XRD and FTIR methods. The absorption spectra of the prepared glasses were measured to determine their energy gap and their related optical properties. The density of the glasses and other physical parameters were also reported. Additionally, with the help of Photon Shielding and Dosimetry (PSD) software, we investigated the radiation shielding parameters of the prepared glass systems at different energy values. It was found that an increase in the density of the glasses by increasing the concentration of BaO significantly improved the gamma ray shielding ability of the samples. For practical results, a compatible irradiation set up was designed to check the shielding capability of the obtained glasses using a gamma ray source at 662 keV. The experimentally obtained results strongly agreed with the data obtained by PDS software at the same energy. These results demonstrated that the investigated glass system is a good candidate for several radiation shielding applications when comparing it with other commercial shielding glasses and concretes.

Evaluation of the radiation damage effect on mechanical properties in Tehran research reactor (TRR) clad

  • Amirkhani, Mohamad Amin;Khoshahval, Farrokh
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2975-2981
    • /
    • 2020
  • Radiation damage is one of the aging important causes in nuclear reactors. Radiation damage causes changes in material properties. In this study, this effect has been evaluated and analyzed on the clad of the Tehran research reactor (TRR). A grade 6061 aluminum is used as a clad in the TRR. The MCNPX code is used to designate the most sensitive location of the reactor and calculate neutron flux distribution. Then, a software using FORTRAN language programming is developed to process the particle track (PTRAC) output file of the MCNPX code. The SRIM code is used here to calculate the rate of displacement per atom. Moreover, the SPECOMP and SPECTER codes are also applied to estimate the displacement rate and compared with the results attained using the SRIM code. The rate of displacement per atom by the SPECTER and SRIM codes have been obtained 2.54 × 10-7 dpa/s and 2.44 × 10-7 dpa/s (QD method), respectively. Also, the mechanical properties have been evaluated using the RCC-MRx code and have been compared with experimental results. Finally, the change in the matter specification has been analyzed as a function of time.

Determination of dosimetric dependence for effective atomic number of LDR brachytherapy seed capsule by Monte Carlo simulation

  • Berkay Camgoz;Dilara Tarim
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2734-2741
    • /
    • 2023
  • Brachytherapy is a special case of radiotherapy. It should be arranged according to some principles in medical radiation applications and radiation physics. The primary principle is to use as low as reasonably achievable dose in all ionizing radiation applications for diagnostic and therapeutic treatments. Dosimetric distributions are dependent on radioactive source properties and radiation-matter interactions in an absorber medium such as phantom or tissue. In this consideration, the geometrical structure and material of the seed capsule, which surrounds a radioactive material, are directly responsible for isodose profiles and dosimetric functions. In this study, the radiometric properties of capsule material were investigated on dose distribution in a water phantom by changing its nuclear properties using the EGSnrc Monte Carlo (MC) simulation code. Effective atomic numbers of hypothetic mixtures were calculated by using different elements with several fractions for capsule material. Model 6711 brachytherapy seed was modeled by EGSnrc/Dosrcnrc Code and dosimetric functions were calculated. As a result, dosimetric parameters of hypothetic sources have been acquired in large-scale atomic number. Dosimetric deviations between the data of hypothetic seeds and the original one were analyzed. Unit dose (Gy/Particle) distributions belonging to different types of material in seed capsule have remarkably differed from the original capsule's data. Capsule type is major variable to manage the expected dose profile and isodose distribution around a seed. This study shows us systematically varied scale of material type (cross section or effective atomic number dependent) offers selective material usage in production of seed capsules for the expected isodose profile of a specific source.