• 제목/요약/키워드: Radiation Properties

Search Result 1,335, Processing Time 0.027 seconds

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I.;Akman, F.;Kacal, M.R.;Kumar, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.860-866
    • /
    • 2019
  • The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

Antioxidant Effect of Annexin A-1 Induced by Low-dose Ionizing Radiation in Adipose-derived Stem Cells

  • You, Ji-Eun;Lee, Seung-Wan;Kim, Keun-Sik;Kim, Pyung-Hwan
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2020
  • Radiation therapy is one of the primary options for the treatment of malignant tumors. Even though it is an effective anti-cancer treatment, it can cause serious complications owing to radiation-induced damage to the normal tissue around the tumor. It was recently reported that normal stem cell response to the genotoxic stress of ionizing radiation can boost the therapeutic effectiveness of radiation by repairing damaged cells. Therefore, we focused on annexin A-1 (ANXA1), one of the genes induced by low-dose irradiation, and assessed whether it can protect adipose-derived stem cells (ADSCs) against oxidative stress-induced damage caused by low-dose irradiation and improve effectively cell survival. After confirming ANXA1 expression in ADSCs transfected with an ANXA1 expression vector, exposure to hydrogen peroxide (H2O2) was used to mimic cellular damage induced by a chronic oxidative environment to assess cell survival under oxidative conditions. ANXA1-transfected ADSCs demonstrated that increased viability compared with un-transfected cells and exhibited enhanced anti-oxidative properties. Taken together, these results suggest that ANXA1 could be used as a potential therapeutic target to improve the survival of stem cells after low-dose radiation treatment.

Bismuth modified gamma radiation shielding properties of titanium vanadium sodium tellurite glasses as a potent transparent radiation-resistant glass applications

  • Zaid, M.H.M.;Matori, K.A.;Sidek, H.A.A.;Ibrahim, I.R.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1323-1330
    • /
    • 2021
  • This work reported the radiation shielding characteristic of the bismuth titanium vanadium sodium tellurite glass system. The density of the specially-developed glass samples was increased from 2.21 to 4.01 g/cm3 with the addition of Bi2O3, despite the fact the molar volume is decease within 85.43-54.79 cm3/mol. The WinXcom program was used to approximate the effect of Bi2O3 on the gamma radiation shielding parameters of bismuth titanium vanadium sodium tellurite glasses. The ㎛ values decrease with the increase of Bi2O3 concentration. The computed data shows that the glass sample with 20 mol.% of Bi2O3 content has the greatest radiation attenuation performance in comparison to other selected glasses. The Bi2O3-TiO2-V2O5-Na2O-TeO2 glass system shows excellent neutron shielding material with high long-term light transmittance and discharge resistance and could be potentially used as transparent radiation-resistant shielding glass applications.

Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3

  • Issa, Shams A.M.;Ali, Atif Mossad;Tekin, H.O.;Saddeek, Y.B.;Al-Hajry, Ali;Algarni, Hamed;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1297-1303
    • /
    • 2020
  • In this study, nuclear radiation shielding and rigidity parameters of Y (0.1-x)B0.6Bi1.8O3La2x glassy system were investigated in order to determine it's suitability for use as nuclear radiation shielding materials. Therefore, a group of bismuth borate glass samples with La2O3 additive were synthesized using the technique of melt quenching. According to the results, the increase of the La2O3 additive increases the density of the glass samples and the mass attenuation coefficient (μm) values, whereas the half-value layer (HVL) and mean free path (MFP) values decrease. The effective atomic number (Zeff) is also enhanced with an increment of both mass removal cross section for neutron (ΣR) and absorption neutron scattering cross section (σabs). In addition to the other parameters, rigidity parameter values were theoretically examined. The increase of La2O3 causes some other important magnitudes to increase. These are the average crosslink density, the number of bonds per unit volume, as well as the stretching force constant values of these glass samples. These results are in concordance with the increase of elastic moduli in terms of the Makishima-Mackenzie model. This model showed an increase in the rigidity of the glass samples as a function of La2O3.

Fabrication, characterization, simulation and experimental studies of the ordinary concrete reinforced with micro and nano lead oxide particles against gamma radiation

  • Mokhtari, K.;Kheradmand Saadi, M.;Ahmadpanahi, H.;Jahanfarnia, Gh.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3051-3057
    • /
    • 2021
  • The concrete is considered as an important radiation shielding material employed widely in nuclear reactors, particle accelerators, laboratory hot cells and other different radiation sources. The present research is dedicated to the shielding properties study of the ordinary concrete reinforced with different weight fractions of lead oxide micro/nano particles. Lead oxide particles were fabricated by chemical synthesis method and their properties including the average size, morphological structure, functional groups and thermal properties were characterized by XRD, FESEM-EDS, FTIR and TGA analysis. The gamma ray mass attenuation coefficient of concrete composites has been calculated and measured by means of the Monte Carlo simulation and experimental methods. The simulation process was based on the use of MCNP Monte Carlo code where the mass attenuation coefficient (μ/ρ) has been calculated as a function of different particle sizes and filler weight fractions. The simulation results showed that the employment of the lead oxide filler particles enhances the mass attenuation coefficient of the ordinary concrete, drastically. On the other hand, there are approximately no differences between micro and nano sized particles. The mass attenuation coefficient was increased by increasing the weight fraction of nanoparticles. However, a semi-saturation effect was observed at concentrations more than 10 wt%. The experimental process was based on the fabrication of concrete slabs filled by different weight fractions of nano lead oxide particles. The mass attenuation coefficients of these slabs were determined at different gamma ray energies using 22Na, 137Cs and 60Co sources and NaI (Tl) scintillation detector. The experimental results showed that the HVL parameter of the ordinary concrete reinforced with 5 wt% of nano PbO particles was reduced by 64% at 511 keV and 48% at 1332 keV. Reasonable agreement was obtained between simulation and experimental results and showed that the employment of nano PbO particles is more efficient at low gamma energies up to 1Mev. The proposed concrete is less toxic and could be prepared in block form instead of toxic lead blocks.

Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review

  • Kma, Lakhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2405-2425
    • /
    • 2014
  • Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (${\leq}5Gy$) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury.

A Study on Characterization of Polyethylene Separators Irradiated at Various Electron Beam Current Conditions (다양한 전자선 전류 조건에서 조사된 폴리에틸렌 분리막의 특성 연구)

  • Im, Jong-Su;Sohn, Joon-Yong;Shin, Jun-Hwa;Lim, Youn-Mook;Choi, Jae-Hak;Kim, Jeong-Soo;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, crosslinked polyethylene (PE) separators for lithium secondary batteries were prepared by an electron beam irradiation under various beam currents and dose rates. The crosslinking degree increased up to maximum 71% with an increasing absorption dose and with a decreasing beam current. The PE separators irradiated at lower beam currents showed better thermal shrinkage (51%) and mechanical properties than the original PE separator and PE separators irradiated at higher beam current. The ionic conductivity ($1.01{\times}10^{-3}\;S/cm$) and electrolyte uptake (275%) of the crosslinked PE separators were comparable to the original PE separator.

Development of a Web-Based Program for Cross-Calibration and Record Management of Radiation Measuring Equipment

  • Park, So Hyun;Lee, Rena;Kim, Kyubo;Ahn, Sohyun;Lim, Sangwook;Cho, Samju
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.59-63
    • /
    • 2019
  • Purpose: To manage radiation measurement equipment, a web-based management program has been developed in this study. Materials and Methods: This program is based on a web service and Java Server Pages (JSP) and employs compatibility and accessibility. Results: The first step in the workflow has been designed to create accounts for each user or organization and to log in. The program consists of two parts: fields for listed instruments, and measurement information. The instruments for measuring radiation listed in this program are as follows: ionization chambers, survey meters, thermometers, barometers, electrometers, and phantoms. Instrument properties can be put in the recording fields and browsing for associated instruments can be performed. The main part of the program is the cross-calibration for each ion chamber. For instance, the ionization chamber to be used as a relative dosimeter can be registered by cross-calibration data with a reference chamber calibrated by an accredited laboratory. This program supports methods using the central axis transfer theory for cross-calibration for the ionization chambers. The reference and field ionization chambers were placed in a solid water phantom along the beam central axis at two different depths, and then the positions were switched. Each measured value was used for calculating the cross-calibration factor. Conclusions: Because many instruments are used and managed in radiation oncology departments, systematic, traceable recording is very important. The web-based program developed in this study is expected to be used effectively in the maintenance of radiation measurement instruments.

Curcumin Attenuates Radiation-Induced Inflammation and Fibrosis in Rat Lungs

  • Cho, Yu Ji;Yi, Chin Ok;Jeon, Byeong Tak;Jeong, Yi Yeong;Kang, Gi Mun;Lee, Jung Eun;Roh, Gu Seob;Lee, Jong Deog
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2013
  • A beneficial radioprotective agent has been used to treat the radiation-induced lung injury. This study was performed to investigate whether curcumin, which is known to have anti-inflammatory and antioxidant properties, could ameliorate radiation-induced pulmonary inflammation and fibrosis in irradiated lungs. Rats were given daily doses of intragastric curcumin (200 mg/kg) prior to a single irradiation and for 8 weeks after radiation. Histopathologic findings demonstrated that macrophage accumulation, interstitial edema, alveolar septal thickness, perivascular fibrosis, and collapse in radiation-treated lungs were inhibited by curcumin administration. Radiation-induced transforming growth factor-${\beta}1$ (TGF-${\beta}1$), connective tissue growth factor (CTGF) expression, and collagen accumulation were also inhibited by curcumin. Moreover, western blot analysis revealed that curcumin lowered radiation-induced increases of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), TNF receptor 1 (TNFR1), and cyclooxygenase-2 (COX-2). Curcumin also inhibited the nuclear translocation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) p65 in radiation-treated lungs. These results indicate that long-term curcumin administration may reduce lung inflammation and fibrosis caused by radiation treatment.