• Title/Summary/Keyword: Radiation Pneumonitis

Search Result 74, Processing Time 0.025 seconds

The Expression of Adhesion Molecules on BAL Cells and Serum Soluble ICAM-1 Level after the Radiotherapy for the Lung Cancer and Its Relationship to the Development of of Radiation Pneumonitis and Fibrosis (방사선 치료후 기관지-폐포세척액내 폐포대식세포 및 임파구의 접착분자발현 변화와 방사선에 의한 폐렴 및 폐섬유증발생의 예측인자로서의 의의)

  • Kim, Dong-Soon;Paik, Sang-Hoon;Choi, Eun-Kyung;Chang, Hye-Sook;Choi, Jung-Eun;Lim, Chae-Man;Koh, Yun-Suck;Lee, Sang-Do;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.75-87
    • /
    • 1996
  • Background: Lung cancer is the second most frequent malignancy in man in Korea. Surgery is the best treatment modality for non-small cell lung cancer, but most patients were presented in far advanced stage. So radiation therapy(RT) with or without chemotherapy is the next choice and radiation-induced pneumonitis and pulmonary fibrosis is the major limiting factor for the curative RT. Radiation pneumonitis is manifested with fever, cough and dyspnea, 2~3 months after the termination of radiotherpy. Chest X ray shows infiltration, typically limited to the radiation field, but occasionally bilateral infiltration was reported. Also Gibson et al reported that BAL lymphocytosis was found in both lungs, even though the radiation was confined to one lung. The aim of this study is to investigate the change of adhesion molecules expression on BAL cells and serum soluble ICAM-1(sICAM-1) level after the RT and its relationship to the development of radiation pneumonitis. The second aim is to confirm the bilaterality of change of BAL cell pattern and adhesion molecule expression. Subjects: BAL and the measurement of sICAM level in serum and BALF were done on 29 patients with lung cancer who received RT with curative intention. The BAL was done before the RT in 16 patients and 1~2 month after RT in 18 patients. 5 patients performed BAL before and after RT. Result: Clinically significant radiation pneumonitis developed in 7 patients. After RT, total cell count in BAL was significantly increased from $(20.2{\pm}10.2){\times}10^6\;cells/ml$ to $(35.3{\pm}21.6){\times}10^6\;cells/ml$ (p=0.0344) and %lymphocyte was also increased from $5.3{\pm}4.2%$ to $39.6{\pm}23.4%$ (p=0.0001) in all patient group. There was no difference between ipsilateral and contraleteral side to RT, and between the patients with and without radiation-pneumonitis. In whole patient group, the level of sICAM-1 showed no significant change after RT(in serum: $378{\pm}148$, $411{\pm}150\;ng/ml$, BALF: $20.2{\pm}12.2$, $45.1{\pm}34.8\;ng/ml$, respectively), but there was a significant difference between the patients with pneumonitis and without pneumonitis (serum: $505{\pm}164$ vs $345{\pm}102\;ng/ml$, p=0.0253, BALF: $67.9{\pm}36.3$ vs $25.2{\pm}17.9\;ng/ml$, p=0.0112). The expression of ICAM-1 on alveolar macrophages (AM) tends to increase after RT (RMFI: from $1.28{\pm}0.479$ to $1.63{\pm}0.539$, p=0.0605), but it was significantly high in patients with pneumonitis ($2.10{\pm}0.390$) compared to the patients without pneumonitis ($1.28{\pm}0.31$, p=0.0002). ICAM-1 expression on lymphocytes and CD 18 (${\beta}2$-integrin) expression tended to be high in the patients with pneumonitis but the difference was statiastically not significant. Conclusion: Subclinical alveolitis on the basis of BAL finding developed bilaterally in all patients after RT. But clinically significant pneumonitis occurred in much smaller fraction and the ICAM-1 expression on AM and the sICAM-1 level in serum were good indicator of it.

  • PDF

Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy

  • Kim, Kangpyo;Lee, Jeongshim;Cho, Yeona;Chung, Seung Yeun;Lee, Jason Joon Bock;Lee, Chang Geol;Cho, Jaeho
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.163-171
    • /
    • 2017
  • Purpose: Although stereotactic ablative body radiotherapy (SABR) is widely used therapeutic technique, predictive factors of radiation pneumonitis (RP) after SABR remain undefined. We aimed to investigate the predictive factors affecting RP in patients with primary or metastatic lung tumors who received SABR. Materials and Methods: From 2012 to 2015, we reviewed 59 patients with 72 primary or metastatic lung tumors treated with SABR, and performed analyses of clinical and dosimetric variables related to symptomatic RP. SABR was delivered as 45-60 Gy in 3-4 fractions, which were over 100 Gy in BED when the ${\alpha}/{\beta}$ value was assumed to be 10. Tumor volume and other various dose volume factors were analyzed using median value as a cutoff value. RP was graded per the Common Terminology Criteria for Adverse Events v4.03. Results: At the median follow-up period of 11 months, symptomatic RP was observed in 13 lesions (12 patients, 18.1%), including grade 2 RP in 11 lesions and grade 3 in 2 lesions. Patients with planning target volume (PTV) of ${\leq}14.35mL$ had significantly lower rates of symptomatic RP when compared to others (8.6% vs. 27%; p = 0.048). Rates of symptomatic RP in patients with internal gross tumor volume (iGTV) >4.21 mL were higher than with ${\leq}4.21mL$ (29.7% vs. 6.1%; p = 0.017). Conclusions: The incidence of symptomatic RP following treatment with SABR was acceptable with grade 2 RP being observed in most patients. iGTV over 4.21 mL and PTV of over 14.35 mL were significant predictive factors related to symptomatic RP.

The Study of Normal Tissue Complication Probability(NTCP) for Radiation Pneumonitis by Effective Volume Method (유효체적 방법과 임상분석을 통한 방사선에 의한 정상 폐조직의 부작용 확률에 관한 연구)

  • Ahn Seung Do;Choi Eun Kyung;Yi Byong Yong;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.243-249
    • /
    • 1997
  • Purpose : In radiation therapy, NTCF is very importart indicator of selecting the optimal treatment plan. In our study, we tried to find out usefullness of NTCP in lung cancer by comparng the incidence of radiation pneumonitis with NTCP. Materials and Methods : From August 1993 to December 1994, thirty six patients with locally advanced non=small cell lung cancer were treated by concurrent chemoradiation therapy. Total dose of radiation therapy was 6480cGy (120cGy, bid) and chemotherapeutlc agents were mitomycin C. vinblastion, cisplatin (2 cycles, 4 weeks interval). We evaluated the development of raniation pneumonitis by CT scan, chest x-rar and clinical symptoms. We used grading system of South Western Oncology Group (SWOG) for radiation pneumanitis. Dose Volume Histograms (DVH) were analyzed for ipsilateral and whole lung, Non uniform DVH was translated to uniform DVH by effective volume method. With these data, we calculated NTCP for ipsilateral and whole lung. Finally we compared the clinical results to NTCP. Results : Eight of thrity six patients developed radiation pneumonitis. Of these 8 patients , 6 had grade I severity and 2 had grade II. The average NTCP value cf the patients who showed radiation pneumonitis was significantly higher than that uf the patients without pneumonitis $(66\%\;vs.\;26.4\%)$. But the results of pulmonary function test was not correlated with NTCP. Conclusion : NTCP of lung is very good indicator for selecting rival treatment planning in lung cancer. According to the results of NTCP, it may be possible to adjust target volume and optimize target dose. In the near future, we are going to anaiyze the effect of hyperfractionation and concurrent chemotherapy in addition to NTCP.

  • PDF

Preliminary Study for Development of Pattern Identification Tool for Radiation Pneumonitis (방사선폐렴 변증(辨證)도구 개발을 위한 기초연구)

  • Kim, Jae-hyo;Bhang, Yeon-hee;Do, Ha-yoon;Ahn, Jun-mo;Kim, Kwan-il;Lee, Beom-joon;Jung, Sung-ki;Jung, Hee-jae
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.32-47
    • /
    • 2017
  • Objective: The purpose of this study was to develop a standard tool for pattern identification of radiation pneumonitis. Methods: Textbooks, published studies, and references with comments about patterns were reviewed. Through the Delphi method, we determined pattern identifications based on advice from a committee of experts composed of 13 Korean respiratory internal medicine professors. Results: Using the Delphi method, four pattern identifications were chosen: Qi Deficiency (氣虛), Yin Deficiency (陰虛), Heat Toxin (熱毒), and Phlegm Dampness (痰濕). The tool was developed in a question-and-answer format with 35 questions. Conclusions: A pattern identification tool that can discriminate the patterns of radiation pneumonitis for standardized diagnosis was developed through expert consultation. Further study of its validity and reliability is necessary.

Imaging Feature of Radiation Induced Lung Disease (방사선 폐손상의 방사선학적 소견)

  • Lee, Jae Gyo;Rho, Byeung Hak;Chang, Jae Chun;Kim, Myung Se
    • Journal of Yeungnam Medical Science
    • /
    • v.17 no.2
    • /
    • pp.146-154
    • /
    • 2000
  • Background and Purpose: Radioopaque lesions are commonly seen in patients who received thoracic radiotherapy for various kinds of thoracic neoplasm, But therir exact diagnos are sometimes uncertain. Patients and Methods: We examined simple chest radiograph and computed tomogram(CT) of 69 patients who received thoracic radiotherapy for lung cancer and were follow up at least 6 months in Yeungnam University Medical Center. Results: Of the 69 patients. thirty-eight patients showed radioopaque lesions in their chest radiographs except radiation fibrosis; radiation pneumonitis was witnessed in 24 patients. infectious pneumonia in 8 patients, and recurrence in 6 patients. In radiation pneumonitis patients, the pneumonitis occurred usually between 50 to 130 days after receiving radiation therapy, and interval between pneumonitis and fibrosis is 21 to 104 days. Simple chest radiographs of radiation pneumonitis(24 patients) represented ground glass opacities or consolidation in 4 cases(type I, 17%), reticular of reticulonodular opacities in 10 cases(type II, 42%), irregular patchy consolidations in 2 cases( type III, 8%), and consolidation with fibrosis in 8 cases(type IV, 33%), CT represent ground glass opacities or consolidation in 5 cases(type I, 29%), irregular nodular opacities in 3 cases(type II, 19%), irregular opacity beyond radiation fields in 3 cases(type III, 18%), and consolidation with fibrosis in 6 cased(type IV, 35%). The CT of four patients who represented type II on simple chest radiographs reveal type I and III, and CT of two patients with clinical symptoms who had no abnormal finding on simple radiograph revealed type I. Conclusions: In conclusion, computed tomogram is superior to the simple radiograph when trying to understand the pathologic process of radiation pneumonitis and provide confidence in the diagnosis of radiation induced lung disease.

  • PDF

Predictors of radiation pneumonitis and pulmonary function changes after concurrent chemoradiotherapy of non-small cell lung cancer

  • Park, Young Hee;Kim, Jae-Sung
    • Radiation Oncology Journal
    • /
    • v.31 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Purpose: To evaluate the predictive factors of radiation pneumonitis (RP) and associated changes in pulmonary function after definitive concurrent chemoradiotherapy (CCRT) in patients with non-small cell lung cancer (NSCLC). Materials and Methods: Medical records of 60 patients with NSCLC who received definitive CCRT were retrospectively reviewed. Dose volumetric (DV) parameters, clinical factors, and pulmonary function test (PFT) data were analyzed. RP was graded according to the CTCAE ver. 4.0. Percentage of lung volume that received a dose of threshold (Vdose) and mean lung dose (MLD) were analyzed for potential DV predictors. PFT changes were calculated as the difference between pre-RT and post-RT values at 3, 6, and 12 months after RT. Results: Twenty-two patients (37%) developed grade ${\geq}2$ RP. Among clinical factors, tumor location in lower lobe was associated with RP. Among the DV parameters, only MLD >15 Gy was associated with grade ${\geq}2$ RP. There were statistically significant decreases in PFT at all points compared with pre-RT values in grade ${\geq}2$ RP group. MLD was associated with forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) changes at 6 and 12 months. V10 was associated with FVC changes at 12 months. V20 and V30 were associated with FEV1 changes at 6 months and FVC changes at 12 months. Conclusion: After definitive CCRT in patients with NSCLC, MLD >15 Gy and lower lobe tumor location were predictors of grade ${\geq}2$ RP. Pulmonary functions were decreased after CCRT and the magnitude of changes was associated with DV parameters.

Pathologic Changes in the Rabbit lung Following Single Dose Irradiation (방사선 조사후 관찰한 가토 폐의 병리학적 변화)

  • Lee Hyung Sik;Choi Young Min;Hur Won Joo;Jeong Jin Sook;Yuh Young Hyun;Lee Ki Nam
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.143-150
    • /
    • 1994
  • The damage which radiation produces in tissues such as the lungs can be discussed at the molecular, biophysical, cellular, and organ levels. The cellular effects of irradiating the lungs are related to the histologic and clinical sequelae. In the present study the right lung of rabbits were exposed to single dose of 20 Gy of X-irradiation. Animals from each group were sacrificed monthly for 6 months postexposure. Sections of lung were examined by light microscopy(LM) and by transmission electron microscopy(TEM). Multiple exudative lesions were seen at 2 months after the 20Gy irradiation,and they progressed to a proliferative and then reparative fibrotic lesion by 6 months. Changes in epithelial lining of lung components, particulary the presence of type II pneumocytes were found by both LM and TEM. Capillary endothelial damages were less pronounced. The possible implication of cellular components in radiation pneumonitis and fibrosis is discussed.

  • PDF

Incidence and Prognostic Factors of Radiation Pneumonitis in NSCLC Treated with Intensity Modulated Radiation Therapy(IMRT) (세기조절방사선치료(IMRT)로 치료한 비소세포폐암 환자에서의 방사선 폐렴)

  • Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2008
  • Purpose: To evaluate the incidence and prognostic factors of treatment-related pneumonitis in non-small-cell lung cancer(NSCLC) patients treated with intensity modulated radiation therapy(IMRT). Materials and Methods: One-hundred-five patients with NSCLC treated with IMRT between 1 August 2004 and 30 November 2006 were analyzed retrospectively. The mean age of patients was 62.9 years, and squamous carcinomas were confirmed in 81 patients(77%). Sixty-six patients(62.9%) were classified as stage III, and 59 patients had lesions in the right lung. Twenty-seven patients were treated with a dose of 3,060 cGy preoperatively, and 10 patients were given a dose of 5,040 cGy postoperatively. Sixty-eight patients received a dose of 7,020 cGy for curative intent. Sixty-eight patients were treated with the use of the CORVUS planning system and 37 patients were treated with the use of the ECLIPSE planning system. Results: Of 105 patients, 21 patients(20%) had abnormal radiological findings, but only seven patients(6.7%) required treatment for radiation pneumonitis. Six of the seven patients had other serious lesions, including a bronchioesophageal fistula(one patient), recurrence in the treatment field(two patients), brain metastasis(one patient) and lung-to-lung metastasis(two patients); all of these patients died within 19 months after radiation treatment. Sixteen patients(23.5%) that received planning with the CORVUS system had abnormal lung findings. Five patients(13.5%) had abnormal lung findings with the use of the ECLIPSE planning system. Other prognostic factors such as perioperative radiation therapy, a volume over 10% of the V20 volume in the right lung, were also statistically significant. Conclusion: This retrospective analysis suggests that IMRT could be a beneficial treatment modality for the reduction of radiation pneumonitis in NSCLC patients. However, the higher incidence of abnormal radiological findings in perioperative patients treated with relatively lower doses($3,060{\sim}5,040$ cGy) suggest the need for judicious treatment planning in preoperative or postoperative treatment.

Evaluation of the Radiation Pneumonia Development Risk in Lung Cancer Cases

  • Yilmaz, Sercan;Adas, Yasemin Guzle;Hicsonmez, Ayse;Andrieu, Meltem Nalca;Akyurek, Serap;Gokce, Saban Cakir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7371-7375
    • /
    • 2014
  • Background: Concurrent chemo-radiotherapy is the recommended standard treatment modality for patients with locally advanced lung cancer. The purpose of three-dimensional conformal radiotherapy (3DCRT) is to minimize normal tissue damage while a high dose can be delivered to the tumor. The most common dose limiting side effect of thoracic RT is radiation pneumonia (RP). In this study we evaluated the relationship between dose-volume histogram parameters and radiation pneumonitis. This study targeted prediction of the possible development of RP and evaluation of the relationship between dose-volume histogram (DVH) parameters and RP in patients undergoing 3DCRT. Materials and Methods: DVHs of 41 lung cancer patients treated with 3DCRT were evaluated with respect to the development of grade ${\geq}2$ RP by excluding gross tumor volume (GTV) and planned target volume (PTV) from total (TL) and ipsilateral (IPSI) lung volume. Results: Were admitted statistically significant for p<0.05. Conclusions: The cut-off values for V5, V13, V20, V30, V45 and the mean dose of TL-GTV; and V13, V20,V30 and the mean dose of TL-PTV were statistically significant for the development of Grade ${\geq}2$ RP. No statistically significant results related to the development of Grade ${\geq}2$ RP were observed for the ipsilateral lung and the evaluation of PTV volume. A controlled and careful evaluation of the dose-volume histograms is important to assess Grade ${\geq}2$ RP development of the lung cancer patients treated with concurrent chemo-radiotherapy. In the light of the obtained data it can be said that RP development may be avoided by the proper analysis of the dose volume histograms and the application of optimal treatment plans.

Radiation Effect on NO, NOS and TGF-$\beta$ Expressions In Rat Lung (쥐의 폐에서 방사선이 Nitric Oxide (NO), Nitric Oxide Synthase (NO) 및 TGF- $\beta$의 발현에 미치는 영향)

  • Oh Young-Taek;Park Kwang-Joo;Kil Hoon-Jong;Ha Mahn Joon;Chun Mison;Kang Seung-Hee;Park Seong-Eun;Chang Sei-Kyung
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.321-328
    • /
    • 2000
  • Purpose :NOS2 induce NO Production and NO activate TGF-${\beta}$. The TGF-${\beta}$ is a inhibitor of NOS2. If this negative feedback mechanism operating in radiation pneumonitis model, NOS2 inhibitor may play a role in TGF-${\beta}$ suppression. We planned this study to evaluate the expression patterns of NO, NOS2 and TGF-${\beta}$ in vivo radiation pneumonitis model. Materials and Methods : Sixty sprague-Dawley rat were irradiated 5 Gy or 20 Gy. They were sacrificed 3, 7, 14, 28 and 56 days after irradiation. During sacrifice, we peformed broncho-alveolar lavage (BAL). The BAL fluids were centrifuged and supernatents were used for measure NO and TGF-${\beta}$, and the cells were used for RT-PCR. Results : After 5 Gy of radiation, NO in BAL fluid increased at 28 days in both lung and TGF-${\beta}$ in left lung at 56 days. NO increased in BAL fluid at 28 days in both lung after irradiation and TGF-${\beta}$ in right lung at 28-56 days after 20 Gy of radiation. After 5 Gy of radiation, NOS2 expression was increased in right lung at 14 days, in both lung at 28 days and in left lung at 56 days. TGF-${\beta}$ expression was reduced in both lung at 28 days and increased in left lung at 56 days. Conclusions :The Proposed feedback mechanism of NO, NOS2 and TGF-${\beta}$ was operated in vivo radiation pneumonitis model. At 56 days, however, NOS2 and TGF-${\beta}$ expressed concurrently in left lung after 5 Gy and in both lung after 20 Gy of radiation.

  • PDF