• Title/Summary/Keyword: Radiation Output

Search Result 466, Processing Time 0.024 seconds

Wide and Dual-Band MIMO Antenna with Omnidirectional and Directional Radiation Patterns for Indoor Access Points

  • Yeom, Insu;Jung, Young Bae;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.20-30
    • /
    • 2019
  • A wide-band multiple-input multiple-output (MIMO) antenna with dual-band (2.4 and 5 GHz) operation is proposed for premium indoor access points (IAPs). Typically, an omni-directional pattern is used for dipole antennas and a directional radiation pattern is used for patch antennas. In this paper, both antenna types were used to compare their performance with that of the proposed $2{\times}2$ MIMO antenna. We simulated and measured the performance of the MIMO antenna, including the isolation, envelope correlation coefficient (ECC), mean effective gain (MEG) for the IAPs, and the throughput, in order to determine its communication quality. The performance of the antennas was analyzed according to the ECC and MEG. The proposed antenna has sufficient performance and excellent characteristics, making it suitable for IAPs. We analyzed the communication performance of wireless networks using the throughput data of a typical office environment. The network throughput of an 802.11n device was used for the comparison and was conducted according to the antenna type. The results showed that the values of the ECC, MEG, and the throughput have unique characteristics in terms of their directivity, antenna gains, isolation, etc. This paper also discusses the communication performance of various aspects of MIMO in multipath situations.

The Power Amplifier Control Design of eLoran Transmitter

  • Son, Pyo-Woong;Seo, Kiyeol;Fang, Tae Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.229-234
    • /
    • 2021
  • In this paper, a study was conducted on the power amplifier control required to design an eLoran transmitter system using a low-height antenna. The eLoran transmitter developed during the eLoran technology development project conducted in Korea used a small 35 m antenna due to the difficulty of securing a site for antenna installation. This antenna height is very low compared to the height of 750 m which is required for eLoran 100 kHz signal transmission without any radiation loss. In the case of using such a small antenna, not only the radiation efficiency of the transmission is lowered, but also the power module control must be performed more precisely in order to transmit the eLoran standard signal. The equivalent RLC circuit of the transmitter system was implemented and transient analysis was conducted to derive the input required voltage for satisfying the output requirement. The voltage waveform was also generated by the RLC circuit analysis to generate the eLoran signal. Furthermore, we suggest power width modulation method to control eLoran power amplifier module more sophisticatedly.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.

Flexible liquid light-guide-based radiation sensor with LaBr3:Ce scintillator for remote gamma-ray spectroscopy

  • Jae Hyung Park;Siwon Song;Seunghyeon Kim;Taeseob Lim;Jinhong Kim;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1045-1051
    • /
    • 2023
  • In this study, we fabricated a liquid light-guide-based radiation sensor with a LaBr3:Ce scintillator for remote gamma-ray spectroscopy. We acquired the energy spectra of Cs-137 and Co-60 using the proposed sensor, estimated the energy resolutions of the full energy peaks, and compared the scintillation light output variations. The major peaks of the radionuclides were observed in each result, and the estimated energy resolutions were similar to that of a general NaI(Tl) scintillation detector without a liquid light guide. Moreover, we showed the relationships of energy resolution and analog-to-digital channel regarding the number of photoelectrons produced and confirmed the effects of light guide length on remote gamma-ray spectroscopy. The proposed sensor is expected to be utilized to perform remote gamma-ray spectroscopy for distances of 3 m or more and would find application in many fields of nuclear facilities and industry.

Acoustic Power Measurement System of Array Probes for Ultrasonic Diagnostic Equipment Using Radiation Force Balance Methods (방사힘 측정법을 이용한 초음파 진단장치용 배열 탐침자의 음향파워 측정시스템)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.355-364
    • /
    • 2010
  • Considering biological safety, it is very important to measure acoustic power from ultrasonic array probe for diagnostic ultrasound imaging applications. In this paper, to measure acoustic power from each element on array probe for ultrasonic diagnostic equipment, we reconstruct and automate the acoustic power measurement system. The acoustic power from linear, phased and curved array were measured and analyzed. As a result of measurement, the effects caused by directivity of sound beam from curved array were founded. To remove these effects, we developed and applied the correction model. The proposed system is useful to evaluate characteristics of the acoustical output power of array probe.

A Study on the Evaluation of Radiological Effects on Workers from Air Contamination in Radioactive Waste Treatment Facilities (방사성 액체폐기물 처리 시설 내 공기오염에 의한 작업종사자 방사선학적 영향 평가에 대한 연구)

  • Min-Ho Lee;Woo-Beom Ha;Sang-Heon Lee;Jong-Soon Song
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2024
  • Radioactive liquid waste generated during operation and overhaul is collected and reused through the radioactive liquid waste treatment system and continuous monitoring system in the nuclear power plant or discharged to the outside if it satisfies the limit within the control and monitoring. However, there are concerns about boric acid management, which controls the power output of nuclear power plants in radioactive liquid waste. Due to the behavior of boric acid, it is difficult to remove it in the existing liquid radwaste system, and the concentration of boric acid water discharged tends to be higher than the natural state of 5 ppm, so additional facilities should be considered. Therefore, this study aims to evaluate the radiological effects of radioactive waste treatment facilities that are under development and use them as a basis for managing worker exposure and evaluating the safety of facilities in the future.

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

Neutron/gamma scintillation detector for status monitoring of accelerator-driven neutron source IREN

  • S. Nuruyev;D. Berikov;R. Akbarov;G. Ahmadov;F. Ahmadov;A. Sadigov;M. Holik;J. Naghiyev;A. Madadzada;K. Udovichenko
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1667-1671
    • /
    • 2024
  • This paper presents a neutron/gamma detector based on a micropixel avalanche photodiode and a plastic scintillator that monitors the status of the accelerator-driven intense resonance neutron source (IREN) facility by measuring the neutron/gamma intensity in the target hall. The electronics of the neutron/gamma detector has been designed and developed. The size of the plastic scintillator was selected to be 3.7 × 3.7 × 30 mm3 due to the sensitive area of the MAPD. The experimental results demonstrated a dependence between the count rate of the detector and the frequency of the accelerator. The detector is sensitive to intermediate and fast neutrons. The minimum detectable energy was determined to be 200 keV using Cs-137 point gamma source. The maximum counting rate of the detector from TTL out is about 2.2⋅106 counts/sec, but for analogue output it is about 2⋅107 counts/sec. The detector can not allow discriminating neutrons and gamma rays by charge integration method.

Hypofractionated Radiotherapy for Breast Cancers - Preliminary Results from a Tertiary Care Center in Eastern India

  • Nandi, Moujhuri;Mahata, Anurupa;Mallick, Indranil;Achari, Rimpa;Chatterjee, Sanjoy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2505-2510
    • /
    • 2014
  • Background: The standard radiotherapy (RT) fractionation practiced in India and worldwide is 50Gy in 25 fractions over 5 weeks to the chest wall or whole breast followed by tumour bed boost in case of breast conservation (BCS). A body of validated data exists regarding hypofractionation in breast cancer. We here report initial results for 135 patients treated at our center with the START-B type of fractionation. Materials and Methods: From May 2011 till July 2012, women with all stages of breast cancer (excluding metastatic), who had undergone BCS or mastectomy were planned for 40Gy in 15 fractions over 3weeks to chest wall/whole breast and supraclavicular fossa (where indicated) followed by tumour bed boost in BCS patients. Planning was done using Casebow's technique. The primary end point was to assess the acute toxicity and the cosmetic outcomes. Using cosmetic scales; patients were assessed during radiotherapy and at subsequent follow up visits with the radiation oncologist. Results: Of the 135 patients, 62 had undergone BCS and 73 mastectomy. Median age of the population was 52 years. Some 80% were T1&T2 tumours in BCS whereas most patients in mastectomy group were T3&T4 tumours (60%). 45% were node negative in BCS group whilst it was 23% in the mastectomy group. Average NPI scores were 3.9 and 4.9, respectively. Most frequently reported histopathology report was infiltrating ductal carcinoma (87%), grade III being most common (58%), and 69% were ER positive tumours, and 30% were Her 2 Neu positive. Triple negative tumours accounted for 13% and their mean age was young (43 yrs.) The maximum acute skin toxicity at the end of treatment was Grade 1 in 94% of the mastectomy grouppatients and 71% in BCS patients. Grade 2 toxicity was 6% in mast group and 23% in BCS group. Grade 3 was 6% in BCS group, no grade 3 toxicity in mastectomy patients and there was no grade 4 skin toxicity in any case. Post RT at 1 month; 39% of BCS patients had persisting Grade I skin reaction which was only 2% in mastectomy patients. At 3 months post RT, 18% patients had persisting hyperpigmentation. At 6 months 8% patients had persisting erythema in the BCS group only. Some 3% BCS and 8% mastectomy patients had lymph edema till the date of evaluation. Cosmetic outcome in BCS patients remained good to excellent 6 months post surgery and radiotherapy. 1 patient of BCS and 3 patients of mast had developed metastatic disease at the time of evaluation. Conclusions: Hypofractionated RT is well tolerated in Indian population with reduced acute skin toxicity and good cosmetic outcome. Regimens such as these should be encouraged in other centers to increase machine output time. The study is on-going to assess long term results.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.