• Title/Summary/Keyword: Radiation Dosimetry

Search Result 622, Processing Time 0.035 seconds

Development of Web-based Dosimetry Calibration Program for High Energy Radiation (웹 기반 고 에너지 방사선에 대한 흡수선량 교정 프로그램 개발)

  • Shin Dong Oh;Shin Dong Ho;Kim Sung Hoon;Park Sung Yong;Seo Won Seop;Ahn Hee Kyung;Kang Jin Oh;Hong Seong Eon
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.116-124
    • /
    • 2005
  • Absorbed dose dosimetry protocols of high energy photon and electron beams, which are widely used and based on an air kerma calibration factors, have somewhat complex formalism and limitations for improving dosimetric accuracy due to uncertainty of the physical parameters used. Recently the IAEA and the AAPM published the absorbed dose to water-based dosimetry protocol. In this work web-based dose calibration program for IAEA TRS-398 and AAPM TG-51 protocols were developed. This program developed using the Visual C$\#$ language can be used in the internet. User selectable dosimetry protocol on the web allows the absorbed dose to water data of the two protocols at a reference point to be easily compared, and enables to conveniently manage and understand the current status of the dosimetry calibration performed at participating institutions in korea. This program and the resultant database from the web-based calibration can be useful in developing new dosimetry protocols in Korea.

  • PDF

Fluoroscopic Radiation Exposure during Percutaneous Kyphoplasty

  • Choi, Hyun-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Objective: The author measured levels of fluoroscopic radiation exposure to the surgeon's body based on the different beam directions during kyphoplasty. Methods: This is an observational study. A series of 84 patients (96 vertebral bodies) were treated with kyphoplasty over one year. The patients were divided into four groups based on the horizontal and vertical directions of the X-Ray beams. We measured radiation exposure with the seven dosimetry badges which were worn by the surgeon in each group (total of 28 badges). Twenty-four procedures were measured in each group. Cumulative dose and dose rates were compared between groups. Results: Fluoroscopic radiation is received by the operator in real-time for approximately 50% (half) of the operation time. Thyroid protectors and lead aprons can block radiation almost completely. The largest dose was received in the chest irrespective of beam directions. The lowest level of radiation were received when X-ray tube was away from the surgeon and beneath the bed (dose rate of head, neck, chest, abdomen and knee: 0.2986, 0.2828, 0.9711, 0.8977, 0.8168 mSv, respectively). The radiation differences between each group were approximately 2.7-10 folds. Conclusion: When fluoroscopic guided-KP is performed, the X-Ray tube should be positioned on the opposite side of the operator and below the table, otherwise the received radiation to the surgeon's body would be 2.7-10 times higher than such condition.

Gamma Dosimetry and Clinical Application with $Al_2O_3$ Thermoluminescent Dosimeter ($Al_2O_3$ 열형광(熱螢光) 특성(特性)을 이용(利用)한 감마선(線)의 측정(測定) 및 임상응용(臨床應用))

  • Chu, Seong-Sil;Park, Chang-Yoon
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 1984
  • The properties of $Al_2O_3$ thermoluminescent phosphor have been observed to apply for gamma dosimetry in vivo. Glow peaks at 380, 420, 490 kelvin temperature with emission in the blue region have been detected and calculated as 1.4 eV the activation energy by means of heat response rising time method. Sensitization and supralinearity in $Al_2O_3$ phosphor could be consistently explained by the deep trap model. Studies of the thermoluminescence growth rate with gamma ray exposure showed linearly to $10^4$ Roentgen and then supralinear rate detected 1.2 power of exposure dose sensitization of $Al_2O_3$ is described five times more than TLD-100 and the fading time is shorter and then tried to apply for gamma dosimetry in vivo.

  • PDF

Total Body Irradiation Technique : Basic Data Measurements and In Vivo Dosimetry (방사선 전신 조사 : 기본 자료 측정 및 생체내에서 선량 측정)

  • Choi Dong-Rak;Choi Ihl Bohng;Kang Ki Mun;Shinn Kyung Sub;Kim Choon Choo
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.219-223
    • /
    • 1994
  • This paper describes the basic data measurements for total body irradiation with 6 Mv photon beam including compensators design. The technique uses bilateral opposing fields with tissue compensators for the head, neck, lungs, and legs from the hip to toes. In vivo dosimetry was carried out for determining absorbed dose at various regions in 7 patients using diode detectors(MULTIDOSE,k Model 9310, MULTIDATA Co., USA). As a results, the dose uniformity of${\pm}3.5{\%}$(generally, within${\pm}10{\%}$can be achieved with out total body irradiation technique.

  • PDF

Preliminary Study on the Internal Dosimetry Program for Carbon-14 at Korean CANDU Reactors (중수로원전에서 발생하는 $^{14}C$에 대한 내부피폭 선량평가 프로그램에 관한 예비 조사)

  • Kong T.Y.;Kim H.C.;Park G.;Hang D.W.;Lee G.J.;Lee S.K.;Park S.C.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-320
    • /
    • 2005
  • More strict radioactive regulations are applied to Korean nuclear power plants (NPPs) since ICRP-60 recommendation for radiation protection and has been enforced since 2003. In particular. carbon-14 and tritium concentrations are significantly higher at CANDU reactors compared to PWR reactors and this increases the risk of internal radiation exposure to workers at CANDU NPPs. Thus, it is necessary to estimate the exact amount of internal radiation exposure to workers fur radiological protection at CANDU reactors. In this paper, the current dosimetry method for carbon-14 is analyzed for the establishment of internal dosimetry for carbon-14 at domestic NPPs.

  • PDF

Measurement of Linear Energy Spectra for 135 MeV/u Carbon Beams in HIMAC Using Prototype TEPC (프로토 타입 조직등가비례계수기의 중입자가속기연구소의 135 MeV/u 탄소 이온에 대한 선형에너지 스펙트럼 측정)

  • Nam, Uk-Won;Lee, Jaejin;Pyo, Jeonghyun;Park, Won-Kee;Moon, Bong-Kon;Lim, Chang Hwy;Moon, Myung Kook;Kitamure, Hisashi;Kobayashi, Shingo;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.197-201
    • /
    • 2014
  • TEPC (Tissue Equivalent Proportional Counter) was usually used for high LET radiation dosimetry. We developed a prototype TEPC for micro-dosimetry in the range of $0.2{\sim}300 keV/{\mu}m$. And, the simulated site diameter of the TEPC is $2{\mu}m$, of similar size to a cell nucleus. For purposes of characterization the response for high LET radiation of the TEPC has been investigated under 135MeV/u Carbon ions in HIMAC (Heavy Ion Medical Accelerator). We determined the gas multiplication factor and measured the lineal energy spectrum [yd(y)] of 135 MeV/u Carbon ions. The value of the gas multiplication factor was 315 at 700 V bias voltage. As a result of the experiment, we could more understand the performance of the TEPC for high LET (Linear Energy Transfer) radiation. And the procedure of high LET radiation dosimetry using TEPC is established.

PIXEL-BASED CORRECTION METHOD FOR GAFCHROMIC®EBT FILM DOSIMETRY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Ju, Sang-Gyu;Shin, Jung-Suk;Kim, Jin-Sung;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.670-679
    • /
    • 2010
  • In this paper, a new approach using a pixel-based correction method was developed to fix the non-uniform responses of flat-bed type scanners used for radiochromic film dosimetry. In order to validate the method's performance, two cases were tested: the first consisted of simple dose distributions delivered by a single port; the second was a complicated dose distribution composed of multiple beams. In the case of the simple individual dose condition, ten different doses, from 8.3 cGy to 307.1 cGy, were measured, horizontal profiles were analyzed using the pixel-based correcton method and compared with results measured by an ionization chamber and results corrected using the existing correction method. A complicated inverse pyramid dose distribution was made by piling up four different field shapes, which were measured with GAFCHROMIC$^{(R)}$EBT film and compared with the Monte Carlo calculation; as well as the dose distribution corrected using a conventional method. The results showed that a pixel-based correction method reduced dose difference from the reference measurement down to 1% in the flat dose distribution region or 2 mm in a steep dose gradient region compared to the reference data, which were ionization chamber measurement data for simple cases and the MC computed data for the complicated case, with an exception for very low doses of less than about 10 cGy in the simple case. Therefore, the pixel-based scanner correction method is expected to enhance the accuracy of GAFCHROMIC$^{(R)}$EBT film dosimetry, which is a widely used tool for two-dimensional dosimetry.

Treatment Planning and Dosimetry of Small Radiation Fields for Stereotactic Radiosurgery (Stereotactic Radiosurgery를 위한 소형 조사면의 선량측정)

  • Chu Sung Sil;Suh Chang Ok;Loh John J.K.;Chung Sang Sup
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.101-112
    • /
    • 1989
  • The treatment planning and dosimetry of small fields for stereotactic radiosurgery with 10 MV x-ray isocentrically mounted linear accelerator is presented. Special consideration in this study was given to the variation of absorbed dose with field size, the central axis percent depth doses and the combined moving beam dose distribution. The collimator scatter correction factors of small fields $(1\times1\~3\times3cm^2)$ were measured with ion chamber at a target chamber distance of 300cm where the projected fields were larger than the polystyrene buildup caps and it was calibrated with the tissue equivalent solid state detectors of small size (TLD, PLD, ESR and semiconductors). The central axis percent depth doses for $1\timesl\;and\;3\times3cm^2$ fields could be derived with the same acuracy by interpolating between measured values for larger fields and calculated zero area data, and it was also calibrated with semiconductor detectors. The agreement between experimental and calculated data was found to be under $2\%$ within the fields. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor regions was performed with dose planning computer system (Therac 2300) and was verified with film dosimetry. The more the number of strips and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. The circular cone, we designed, improves the alignment, minimizes the penumbra of the beam and formats ball shape of treatment area without stellate patterns. These dosimetric techniques can provide adequate physics background for stereotactic radiosurgery with small radiation fields and 10MV x-ray beam.

  • PDF