• Title/Summary/Keyword: Radiation Dose Enhancement

Search Result 70, Processing Time 0.027 seconds

Evaluation of Absorbed Dose According to Nanoparticle Density During the Breast Cancer Brachytherapy (유방암 근접치료 시 나노입자의 밀도에 따른 흡수선량 평가)

  • Lee, Deuk-Hee;Nam, Ji-Hee;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.131-135
    • /
    • 2019
  • The purpose of this study was to evaluate the efficacy of brachytherapy of breast cancer by dose assessment which a steady increased in Korea women. The dose assessment was performed using the MCNPX program, a MonteCarlo simulation technique. The sources used for brachytherapy was 192Ir. And nanoparticle which used for dose enhancement was gold. The density of nanoparticle was 7, 18 and 30 mg. Evaluation of absorbed dose according to distance is measured at a distance of 30, 50, 100 and 200 cm from the patient. As a result, The breast absorbed dose results increased in proportion to the density of nanoparticle. And the surrounding organs were not significantly different according to the density. But, in some organs, the absorbed dose decreased as the density of nanoparticles increased. Absorbed dose according to the distance was in inverse proportion to distance.

An Experimental Study on the Effect of Repeated Hyperthermia on the Radiation Injury (반복 온열료법이 방사선조사효과에 미치는 영향에 관한 실험적 연구)

  • Choi, Young-Hi;Park, Charn-Il;Han, Man-Chung
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • To evaluate the influence of prior heat treatment on the thermal enhancement of irradiation effect after hyperthermia, an experimental study was carried out using a total of 80 mice. Hyperthermia was carried out at $43^{\circ}C$ for 40 minutes and was repeated with various intervals. A single dose of 3,000 rad was delivered on skin of mouse tail immediately after the second hyperthermia. The skin changes of the irradiated mouse tail were observed from 7th to 35th post-irradiation days, and the skin scores were analyzed. The results are as follows, 1. The radiation damage on mouse skin increased significantly when radiation was combined with hyperthermia. 2. The radiation damage after repeated hyperthermia is significantly less than that after single hyperthermia, when the interval is 1 to 6 days. 3. As a result, thermal tolerance persists from 1 through 6 days after the initial hyperthermia.

  • PDF

Myocardial Coverage and Radiation Dose in Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source CT

  • Masafumi Takafuji;Kakuya Kitagawa;Masaki Ishida;Yoshitaka Goto;Satoshi Nakamura;Naoki Nagasawa;Hajime Sakuma
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Objective: Third-generation dual-source computed tomography (3rd-DSCT) allows dynamic myocardial CT perfusion imaging (dynamic CTP) with a 10.5-cm z-axis coverage. Although the increased radiation exposure associated with the 50% wider scan range compared to second-generation DSCT (2nd-DSCT) may be suppressed by using a tube voltage of 70 kV, it remains unclear whether image quality and the ability to quantify myocardial blood flow (MBF) can be maintained under these conditions. This study aimed to compare the image quality, estimated MBF, and radiation dose of dynamic CTP between 2ndDSCT and 3rd-DSCT and to evaluate whether a 10.5-cm coverage is suitable for dynamic CTP. Materials and Methods: We retrospectively analyzed 107 patients who underwent dynamic CTP using 2nd-DSCT at 80 kV (n = 54) or 3rd-DSCT at 70 kV (n = 53). Image quality, estimated MBF, radiation dose, and coverage of left ventricular (LV) myocardium were compared. Results: No significant differences were observed between 3rd-DSCT and 2nd-DSCT in contrast-to-noise ratio (37.4 ± 11.4 vs. 35.5 ± 11.2, p = 0.396). Effective radiation dose was lower with 3rd-DSCT (3.97 ± 0.92 mSv with a conversion factor of 0.017 mSv/mGy∙cm) compared to 2nd-DSCT (5.49 ± 1.36 mSv, p < 0.001). Incomplete coverage was more frequent with 2nd-DSCT than with 3rd-DSCT (1.9% [1/53] vs. 56% [30/54], p < 0.001). In propensity score-matched cohorts, MBF was comparable between 3rd-DSCT and 2nd-DSCT in non-ischemic (146.2 ± 26.5 vs. 157.5 ± 34.9 mL/min/100 g, p = 0.137) as well as ischemic myocardium (92.7 ± 21.1 vs. 90.9 ± 29.7 mL/min/100 g, p = 0.876). Conclusion: The radiation increase inherent to the widened z-axis coverage in 3rd-DSCT can be balanced by using a tube voltage of 70 kV without compromising image quality or MBF quantification. In dynamic CTP, a z-axis coverage of 10.5 cm is sufficient to achieve complete coverage of the LV myocardium in most patients.

The Effects of Rat's Sperm Bioassay for Low Dose X-Ray (저선량 X-선 조사가 쥐의 정자에 미치는 생물학적효과)

  • Jin, Gye-Hwan;Min, Soo-Young;Lee, Sang-Bock;Lee, Sam-Yul;Park, Jong-Bae;Lee, Jun-Haeng
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.184-189
    • /
    • 2007
  • In order to investigate the enhancement effects of low dose radiation on biological activation, this study applied low dose X-ray to the whole body of male rats to find out whether hormesis is induced in male germ cells. Total 36 Sprague-Dawley(SD) rats as experimental animal were subdivided into 6 groups(in 6 rats per group) such as control, 10 mGy, 20 mGy, 50 mGy, 100 mGy and 200 mGy radiation group All the groups showed slightly increasing number of sperms per 0.1g semen ($14.216{\times}10^6,\;13.901{\times}10^6,\;14.153{\times}10^6,\;13.831{\times}10^6,\;14.137{\times}10^6,\;14.677{\times}10^6$ respectively), and the motility of sperms amounted to 50.9%, 49.5%, 55.1%, 54.3%, 48.0% and 52.2% respectively. Particularly, compared to the control, the other 5 groups showed higher male hormone level, and the microscopic observations of testicle tissues showed no vacuolization in seminiferous tubules and testis cells. In the results of this experiment, no harmful effect was observed on Sprague-Dawley (SD) rats for which the dose of radiation was controlled as regulated legally by the Ministry of Science and Technology and the Ministry of Health and Welfare. However, as these results were obtained from a limited number of animals, we cannot maintain that the same effect will be observed in the human body. Therefore, there should be further research on the effect on other animals and ultimately on the human body.

Clinical predictive factors of pathologic tumor response after preoperative chemoradiotherapy in rectal cancer

  • Choi, Chi Hwan;Kim, Won Dong;Lee, Sang Jeon;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.30 no.3
    • /
    • pp.99-107
    • /
    • 2012
  • Purpose: The aim of this study was to identify clinical predictive factors for tumor response after preoperative chemoradiotherapy (CRT) in rectal cancer. Materials and Methods: The study involved 51 patients who underwent preoperative CRT followed by surgery between January 2005 and February 2012. Radiotherapy was delivered to the whole pelvis at a dose of 45 Gy in 25 fractions, followed by a boost of 5.4 Gy in 3 fractions to the primary tumor with 5 fractions per week. Three different chemotherapy regimens were used (5-fluorouracil and leucovorin, capecitabine, or tegafur/uracil). Tumor responses to preoperative CRT were assessed in terms of tumor downstaging and pathologic complete response (ypCR). Statistical analyses were performed to identify clinical factors associated with pathologic tumor response. Results: Tumor downstaging was observed in 28 patients (54.9%), whereas ypCR was observed in 6 patients (11.8%). Multivariate analysis found that predictors of downstaging was pretreatment relative lymphocyte count (p = 0.023) and that none of clinical factors was significantly associated with ypCR. Conclusion: Pretreatment relative lymphocyte count (%) has a significant impact on the pathologic tumor response (tumor downstaging) after preoperative CRT for locally advanced rectal cancer. Enhancement of lymphocyte-mediated immune reactions may improve the effect of preoperative CRT for rectal cancer.

Assurance on the Genotoxicological Safety of Fermented Vegetables Pasteurized by Gamma Irradiation

  • Yook, Hong-Sun;Byun, Myung-Woo;Song, Hyun-Pa;Lee, Ju-Woon;Kim, Kwan-Soo;Kim, Kwang-Hoon;Lee, Ho-Joon;Kim, Dong-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.137-142
    • /
    • 2005
  • The genotoxicological safety of fermented vegetables pasteurized by gamma irradiation was examined to consider the possibility of the application of irradiation for extending of fermented vegetables. A fermented vegetable was irradiated at 20 kGy to assure its toxicological safety even at a high dose of radiation. The Ames test with Salmonella typhimurium (TA98, TA100, TA1535, TA1537) and Escherchia coli (WP2), and the chromosomal aberration test in Chinese hamster lung (CHL) cells were performed. In vivo micronucleus test were conducted in mouse bone marrow cells. With or without metabolic activation, negative results were obtained in the Ames test and the chromosomal aberration test. In the micronucleus test, there was no enhancement in the formation of micronucleus, and there were no such significant differences between the irradiated and non-irradiated samples. The observed results indicated that, a level of 20 kGy of gamma irradiation on the fermented vegetable did not bring about any genotoxic effects under the described experimental conditions.

Verification of Secondary Electron Generated by Head Screw in Gamma Knife Using Monte Carlo N-Particle Simulation

  • Kim, Heesoo;Lee, Jeong-Woo
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.29-34
    • /
    • 2020
  • Purpose: The interaction of various substances inserted into the human body and radiation can confirm the radiation enhancement effect. A Leksell frame inserted into the human body for gamma knife treatment will cause not only pain and inconvenience to the patient, but also additional exposure to the patient's normal tissues. In this study, we attempt to confirm the additional exposure caused by the interaction of the Leksell frame and thermoplastic mask, and 60Co used for gamma knife treatment. Methods: A 60Co energy of 1.17, 1.33 MeV is applied using Monte Carlo simulation, and fixation screws and thermoplastic mask are fabricated using aluminum and titanium alloy, and Carbon compounds. Results: Results show a dose enhancement of up to 396.27% higher compared with that without a Leksell frame and up to 391.25% in thermoplastic mask. Conclusions: Hence, appropriate treatment methods and materials must be used to reduce additional exposure to normal tissues.

Enhancement of Image Quality Using Detector Filter (검출기 필터를 이용한 화질의 향상)

  • Lim, Jong-Nam;Kim, Hyung-Tae;Kim, Min-Hye;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.451-456
    • /
    • 2016
  • Radiation dose to patient is unavoidable when diagnosis is carried out using X-ray. Radiation diagnosis using dual energy X-ray was examined to verify the possibility of medical applications by SNR and image scoring. The dual energy X-ray was realized by combining together two image plates and filter of 0.5 mm thick Cu or Al. Under one X-ray exposure, contrast enhanced image was obtained using two images of image plates. The enhanced image showed higher SNR and image score compared to the first image which was the image recorded with the first image plate. The dual energy X-ray technique would be a very useful method for obtaining higher SNR image and for realizing very low dose, and could be applied to medical applications.

Antioxidant System-Inducing Effects of Jeju Ground Water in C57BL/6 Mice against Gamma-ray Radiation

  • Kim, A-Reum-Da-Seul;Jee, Young-Heun;You, Ho-Jin;Hyun, Jin-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, we reported that Jeju ground water contains vanadium components and exerts antioxidant effects in vitro and in vivo via the scavenging of reactive oxygen species and enhancement of antioxidant enzyme activities. In the present study, the antioxidant actions of Jeju ground water were compared with those of tap water against gamma-ray radiation in mice. C57BL/6 mice were irradiated with gamma-ray at a dose rate of 2 Gy. The mice were then given tap water or Jeju ground water for 90 days. Jeju ground water compared with tap water enhanced the activities and levels of superoxide dismutase, catalase, and glutathione peroxidase in irradiated liver tissues. Jeju ground water also enhanced the levels of intracellular reduced glutathione, which is vital for normal liver function and repair. These results suggest that vanadium-containing Jeju ground water can safeguard against the harmful actions of gamma-ray radiation through the support of hepatic antioxidant processes.

A Comparative Study of Dewatering Aid for Digested Sludge by using A Starfish and A Shell (불가사리와 조개껍질을 개량제로 이용한 소화슬러지의 탈수 증진 비교)

  • Lee, Jae-Kwang;Yoo, Dae-Hyun;Lee, Myeon-Ju;Kang, Ho
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2004
  • A study on the enhancement of the dewaterability of sewage sludge was carried out by using the sea waste materials as a dewatering aid. It was made from a starfish and a shell by heating at $105∼700 ^{\circ}C$ and centrifuge and belt press were used as a mechanical dewatering process. The moisture content of sludge cake was reduced by 15∼22% (w/w) after addition of the dewatering aid at the dose of 1∼8 g/100mL of digested sludge. CST (capillary suction time) was measured to evaluate the effect of dewatering aid on sludge dewatering properties. CST was reduced after addition of a shell while increased after addition of a starfish. Enhancement of dewaterability after addition of a shell was better than that of a starfish. The heating temperature effect of the dewatering aid on dewaterability was not clear.