• 제목/요약/키워드: Radiant heating

검색결과 143건 처리시간 0.031초

바닥복사 난방공간의 효율적인 난방제어방법 (The Effective Heating Control Method of the Radiant Floor Heating System)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.317-329
    • /
    • 1996
  • By describing the floor slab of a radiant heating system as a one dimensional transient heat exchanger problem, a dynamic analysis model to incorperate with TRNSYS program was developed and their results were compared with experimental results. Results showed that the both of TPOC(Two Parameter On-off Control) and TPSC(Two Parameter Switching Control) method using room air temperature and floor surface temperature as the control parameters does not maintain room air and floor surface temperature exactly at the setting temperatures. But TPSC method is a better candidate for the temperature regulations of room air and floor surface temperature than TPOC method which can keep on the upper and lower limit temperature according to outside temeperature and wall structure etc. And better thermal circumstance can be given by TPSC method than On-off and TPOC method and the overheating which can be occured at the radiant floor heating system with on-off heating control will be reduced.

  • PDF

생활특성에 따른 바닥복사난방 공간의 열쾌적 범위에 관한 연구 (Thermal Comfort Range of Radiant Floor Heating System by Residential Style)

  • 김상훈;정광섭;김영일
    • 한국지열·수열에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.7-14
    • /
    • 2015
  • This study has been purposed to provide thermal comfort range in accordance with the residential style of radiant floor heating space, and to compare it with the thermal comfort range at predicted mean vote. The survey for the thermal sensation vote to the subjects and the measurement of environmental factors has been executed, and regression analysis has been performed. It is interpreted that the combination of the physical factor and the psychological factor results lower neutral point of the floor sitting style than that of the chair sitting style. There are some difference between the measured predicted mean vote and the thermal sensation vote via survey, which appears to be caused by distinctive heat transfer characteristic of floor radiant heating space, such as, high radiant temperature and contact thermal sensation of floor surface.

이중 윅 타입 히트파이프를 이용한 바닥복사패널의 난방특성 연구 (A Study on the Heating Characteristics of Radiant Floor Panel Using Heat Pipes with the Double Wick)

  • 김용기;이태원
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.183-189
    • /
    • 2012
  • Most of the domestic residential buildings have used the traditional radiant heating system, circulating hot water through the cross-linked polyethylene(PE-X) pipe buried in the floor panel of the heating space. New type of the heating panel was recently developed using heat pipes with double wicks. Some experiments were carried out in this study to verify the thermal characteristics of this heating system at the unit heating space which surrounded by outer space whose temperature of air be maintained scheduled value with time. Through the various experiments with several parameters, such as flow rate, inlet and outlet temperatures of hot water and the heating duration and so on, we found that the floor heating system with heat pipes was able to reduce the pumping power for hot water circulation by 4~31% compared with the conventional panel heating system using PE-X pipe. These results could be used for optimal design and efficient operation of the heating system as well as improvement of thermal comfort.

바닥난방 시스템의 열환경 개선을 위한 제어방안 연구 (A Study on Thermal Heating Control Performance of Automatic Thermostatic Valves in Floor Radiant Heating System)

  • 송재엽;안병천;김경철;장사윤
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.973-978
    • /
    • 2009
  • In this study, the thermal environment characteristics of On-Off control and thermal difference proportional control method in floor radiant heating system were researched by computer simulation. For the analysis of unsteady heat transfer phenomena in household, the method of using electrical equivalent R-C circuit is applied, and radiation heat transfer between panel, ceiling and walls in household is calculated by enclosure analysis method. The parametric study on two control methods, conventional on-off control and temperature error based time control(T.E.B.T.C.) method, are performed to compare thermal heating control performances, respectively.

  • PDF

바닥난방을 위한 부하 예측식 펄스제어 방식의 적용성 연구 (Application Study of the Predictive Pulse Control for Floor Heating System)

  • 조성환;김성수;김용봉;나희형
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.167-175
    • /
    • 2007
  • A predictive pulse control strategy as a means of improving the energy efficiency of radiant floor heating systems is explored. Experiments at the apartment with floor heating system are conducted to assess and compare the energy performance of the predictive pulse control strategy with an existing conventional control strategy. The Results showed that new suggested PPCM( Predictive Pulse Control Method) was available to decrease the gap of $1{\sim}1.5^{\circ}C$ between maximum and minimum indoor temperature of each rooms. Therefore PPCM method was favor to radiant floor heating system which have a delay time of 10-20 minutes for heat transfer by floor layers.

  • PDF

주거용건물의 바닥복사 난방방식에 대한 실태조사 연구 (Research on the actual condition of 'Under Floor Radiant Heating for Apartment Housing')

  • 우병관;이성;김삼열
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.81-86
    • /
    • 2007
  • The research analyzes the arrangement of boiler and hot water header, the method of radiator pipe setting, hot water supply control, hourly heating situation of each room for underfloor radiant heating systems in Korea and suggests an alternative to improve to efficient heating method. One of the best options for install position of hot water distributor is under kitchen sink which is center point of all rooms, according to previous research of the energy saving strategies. When the radiator pipes are arranged to each individual room instead of bedrooms through livingroom and kitchen, it has energy saving effects. For rooms without occupancy according to a time period, hot water supply method should be intermittent heating rather than continuous heating. For this intermittent heating method, individual control of hot water supply is more practical, and it can lead to massive energy savings. The intermittent heating system has time-lag, so it is more effective in energy saving with mild and comfort condition if the spaces are preheated by automatic control equipment prior to required time.

심야용 축열식 전기온풍기의 화재 위험성에 관한 연구 (A study on Fire Hazard of Electric Radiant Heating Systems with Thermal Storage Using Off-peak Electricity)

  • 박민영;문용수
    • 한국화재조사학회지
    • /
    • 제8권1호
    • /
    • pp.41-48
    • /
    • 2006
  • The purpose of this study is to identify the fire danger of the electric radiant heating system and check the way how to use it and the problems that could be possible through a actual case. We carry out an experiment to identify the possibility of the fire in the similar condition of the actual fire case. The results of this study are as follows. It is a possible condition to fire if the air blast of the electric radiant heating system is blocked by some combustible materials such as plastic bags continuously. A temperature sensor and a residual current device are necessary to disconnect the power source. It is also necessary to attach a notice in front of the electric radiant hearing system that shows users the fire danger to forbid the possible fire. Fires could be happened by internal defects of the electronic products. However, we can also find many external reasons to happen fires. Therefore, we need to check all reasons to make fires in the scene of a fire.

  • PDF

난방부하와 온수온돌의 방열성능을 고려한 적정 공급온수온도 산출방법에 관한 연구 (A Study on the Method of Estimating Optimum Supply Water Temperature Considering the Heating Load and the Heat Emission Performance of Radiant Floor Heating Panel)

  • 최정민;이규남;류성룡;김용이;여명석;김광우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.795-800
    • /
    • 2006
  • A common approach to achieve better thermal comfort with hydronic radiant floor heating system is supply water temperature control. This is the control method through which supply water temperature is varied with outdoor temperature. In this study, a comprehensive, yet simple calculation method to find optimum supply water temperature is evaluated by combining heat loss from the building and heat emission from the hydronic radiant floor heating system. And then the control performance of suggested calculation method is confirmed through experiment. It is shown that indoor air temperature is stably maintained around the set point.

  • PDF

바닥 복사난방 배관설비에서 배관파열 사례 연구 (A Case Study on the Plumbing Pipe Burst of Floor Radiant Heating)

  • 정홍도;신용한;박진관;정효민;정한식
    • 설비공학논문집
    • /
    • 제24권10호
    • /
    • pp.745-749
    • /
    • 2012
  • Heating pipes burst was occurred in the apartment complex that was applied floor radiant heating system. There were two opinions for the cause of the bursted heating pipes that was the flaw during construction and defects in the product and also there were conflicting among them. Officials analyzed it in order to investigate the cause of the rupture. Tensile test results showed different tensile strength between the lower part of heating pipe and the upper part of heating pipes. The lower tensile strength is maintained while the top was not secured. The reason why rupture heating pipes is that flow velocity isn't secured and then the air get stagnant. Stagnant air makes hardening. It is caused rupturing. The proper flow rate was confirmed 0.166 m/sec after experiment. It isn't make stagnant air inside heating pipes.

복사 난방 패널의 과도 열전달 해석 (Unsteady Heat Transfer Analysis of Radiant Heating Panel)

  • 이태원;김호영
    • 설비공학논문집
    • /
    • 제4권3호
    • /
    • pp.191-203
    • /
    • 1992
  • To analyze the unsteady heat transfer phenomena in radiant heating panel, a mathematical model was considered. Numerical analysis for solving the governing equations was conducted by using the finite difference method with boundary-fitted meshes. Transient temperature distributions and thermal responses in heating panel were obtained for various design parameters such as pipe pitches, pipe diameters and pipe depths. Experimental results were also obtained to verify the results of calculation.

  • PDF