• Title/Summary/Keyword: Radial sampling

Search Result 45, Processing Time 0.021 seconds

Study on a Robust Optimization Algorithm Using Latin Hypercube Sampling Experiment and Multiquadric Radial Basis Function (Latin Hypercube Sampling Experiment와 Multiquadric Radial Basis Function을 이용한 최적화 알고리즘에 대한 연구)

  • Zhang, Yanli;Yoon, Hee-Sung;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.162-164
    • /
    • 2007
  • This paper presents a "window-zoom-out" optimization strategy with relatively fewer sampling data. In this method, an optimal Latin hypercube sampling experiment based on multi-objective Pareto optimization is developed to obtain the sampling data. The response surface method with multiquadric radial basis function combined with (1+$\lambda$) evolution strategy is used to find the global optimal point. The proposed method is verified with numerical experiments.

  • PDF

A study on the Forest inventory work (삼림자원조사법(森林資源調査法)의 연구(硏究))

  • Kim, Kap Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.5 no.1
    • /
    • pp.10-15
    • /
    • 1966
  • 1) The purpose of this study was to compare the forest survey by ground method with that by aerial photo method. 2) In this study, the forest type map was made by use of the radial line plotter and radial line triangulation method. 3) The difference between the area found by the forest type map above mentioned and that by compass surveying on the ground was none-significant. 4) On aerial photo the stratification was carried out very easily. 5) The following sampling methods were applied : line plot method, representative sampling method and stratified random sampling on the aerial photo. 6) In confirming sampling point the line plot method and the representative sampling method were easier than another. 7) As to stands volume the maximum value was given by stratification, and the minimum by line plot method.

  • PDF

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

A New TE/TR Reduction Technique in MR Pulse Sequences and Its Application to Radial Imaging

  • 김용권;류연철;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.18-18
    • /
    • 2003
  • 목적: MRI 시스템에서 얻어지는 Data는 TR(Repetition Time)과 TE(Echo Time)에 따라서 신호 대잡음비(SNR), 조직들간의 대조도(Contrast), Artifact 및 촬영시간이 결정된다. 이 연구에서는 TR/TE를 줄이는 기법을 이용한 Radial Imaging 영상기법을 제시하고자 한다. 대상 및 방법: 일반적인 Radial Imaging 기법에 HASTE 기법과 Non-uniform sampling 기법의 특징을 이용하여 구현하였으며, TR/TE를 줄일 수 있었으며 얻어진 K-space Data는 가변주파수 역 Fourier Transform을 이용하여 Projection Data를 재구성한 후 Back Projection 기법을 이용하여 최종 영상을 재구성한다.

  • PDF

An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion - (광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 -)

  • Cho, Jaegeol;Lee, Jeonghoon;Kim, Hyun Woo;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

Digital Scan Converter Algorithm for Ultrsound Sector Scanner (초음파 섹터 스캐너를 위한 디지털 스캔 변환 기법)

  • 김근호;오정환
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.469-478
    • /
    • 1996
  • In the conventional digital ultrasound scanner, the reflected signal is sampled either in polar coordinates of R-$\theta$ method, or in Cartesian coordinates of uniform ladder algorithm (ULA). The R-$\theta$ scan method necessitates a coordinate transform process which makes hardware complex in comparison with ULA scan mrthoA In spite of this complexity, R-$\theta$ method has a good resolution in ultrasonographic (US) image, since scan direction of the US imaging is a radial direction. In this paper, a new digital scan converter is proposed, which is named the radius uniform ladder algorithm (RULA). The RULA has the rome scan direction as the US scanning in the radial direction and as the display space in the $\theta$ direction. In tllis new approach, sampled points we uniformly distributed in each horizontal line i.n well as in each radial ray so that the data are displayed in the Cartesian coordinates by the 1-D interpolation process. The propped algorithm has an uniform resolution in the periphery and the center field in comparison with equi-angle ULA and equi-interval ULA. To extend the scan angle, concentric square raster sampling (CSRS) is adopted with reduction of discontinuities on the junctions between horizontal scan and vertical scan. The discontinuities are reduced by using the hmction filtering along the $\theta$ direction.

  • PDF

A Method for RBF-based Approximate Optimization of Expensive Black Box Functions (고비용 블랙박스 함수의 RBF기반 근사 최적화 기법)

  • Park, Sangkun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.443-452
    • /
    • 2016
  • This paper proposes a method for expensive black box optimization using radial basis functions (RBFs). The proposed algorithm is a computational strategy that uses a RBF model approximating the expensive black box function to predict an optimum. First, a RBF-based approximation technique is introduced and a sampling plan for estimation of the black box function is described. Then the proposed algorithm is explained, which presents the pseudo-codes for implementation and the detailed description of each step performed in the optimization process. In addition, numerical experiments will be given to analyze the performance of the proposed algorithm, by investigating computation accuracy, number of function evaluations, and convergence history. Finally, geometric distance problem as application example will be also presented for showing the algorithm applicability to different engineering problems.

A study on the temperature distribution measurement of the high pressure mercury lamp (고압 수은등의 온도분포 측정에 대한 연구)

  • 손승현;김상용;김창섭;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.35-40
    • /
    • 1990
  • Temperature distribution of high pressure mercury lamp has been mesured as a function of time using spectroscopic method. Sampling signal which is synchronized by lamp voltage was used to mesure temporal line intensity at each radius. To obtain radial temprature distribution, the mesured intensity was transformed into radial line intensity by Abel's formula. Absolute temperature profile was calculater from relative intensities of spectral lines as a function of line and tube radius. The temperature profile is very similar to the electrical tube current profile.

  • PDF

Effects of Latin hypercube sampling on surrogate modeling and optimization

  • Afzal, Arshad;Kim, Kwang-Yong;Seo, Jae-won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.240-253
    • /
    • 2017
  • Latin hypercube sampling is widely used design-of-experiment technique to select design points for simulation which are then used to construct a surrogate model. The exploration/exploitation properties of surrogate models depend on the size and distribution of design points in the chosen design space. The present study aimed at evaluating the performance characteristics of various surrogate models depending on the Latin hypercube sampling (LHS) procedure (sample size and spatial distribution) for a diverse set of optimization problems. The analysis was carried out for two types of problems: (1) thermal-fluid design problems (optimizations of convergent-divergent micromixer coupled with pulsatile flow and boot-shaped ribs), and (2) analytical test functions (six-hump camel back, Branin-Hoo, Hartman 3, and Hartman 6 functions). The three surrogate models, namely, response surface approximation, Kriging, and radial basis neural networks were tested. The important findings are illustrated using Box-plots. The surrogate models were analyzed in terms of global exploration (accuracy over the domain space) and local exploitation (ease of finding the global optimum point). Radial basis neural networks showed the best overall performance in global exploration characteristics as well as tendency to find the approximate optimal solution for the majority of tested problems. To build a surrogate model, it is recommended to use an initial sample size equal to 15 times the number of design variables. The study will provide useful guidelines on the effect of initial sample size and distribution on surrogate construction and subsequent optimization using LHS sampling plan.

Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity

  • Block, Kai Tobias;Chandarana, Hersh;Milla, Sarah;Bruno, Mary;Mulholland, Tom;Fatterpekar, Girish;Hagiwara, Mari;Grimm, Robert;Geppert, Christian;Kiefer, Berthold;Sodickson, Daniel K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.87-106
    • /
    • 2014
  • Purpose : To describe how a robust implementation of a radial 3D gradient-echo sequence with stack-of-stars sampling can be achieved, to review the imaging properties of radial acquisitions, and to share the experience from more than 5000 clinical patient scans. Materials and Methods: A radial stack-of-stars sequence was implemented and installed on 9 clinical MR systems operating at 1.5 and 3 Tesla. Protocols were designed for various applications in which motion artifacts frequently pose a problem with conventional Cartesian techniques. Radial scans were added to routine examinations without selection of specific patient cohorts. Results: Radial acquisitions show significantly lower sensitivity to motion and allow examinations during free breathing. Elimination of breath-holding reduces failure rates for non-compliant patients and enables imaging at higher resolution. Residual artifacts appear as streaks, which are easy to identify and rarely obscure diagnostic information. The improved robustness comes at the expense of longer scan durations, the requirement for fat suppression, and the nonexistence of a time-to-center value. Care needs to be taken during the configuration of receive coils. Conclusion: Routine clinical use of radial stack-of-stars sequences is feasible with current MR systems and may serve as substitute for conventional fat-suppressed T1-weighted protocols in applications where motion is likely to degrade the image quality.