• Title/Summary/Keyword: Radial ground.

Search Result 132, Processing Time 0.025 seconds

A Study on the Mechanochemical Effects of Dickite (Dickite의 메카노케미칼 효과에 관한 연구)

  • Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.152-156
    • /
    • 1997
  • In this paper, I meritioned ,I study on thc rnechanochernic;~l effec ts of grountl iljckite To investigate the mechanochemical effects of ground tlickite 1,y planet,~r\- mill. a structul-ill i~nalvsis of dickite prepared with different grinding time has been made 11y X-ray diffraction and ilifierenti,~l tl~i.~-ni;~i analysis. 'l'he $SiO_{4}$ hecira was unchanged bl- milling and remained ;is the local ordering unit s t t - ~ c ~ u ~ - c ~ s in the ground dickitc samples I ) v analyzing the radial distribution function. On the other hand, with an increi~se of the grinding time a decrease of coordination number and atomic distance bet\vccn aluminum and oxygen hi1c.r l~een octurreil, and Li~~antitativcl\. coniirrned them This result corresponded to the local c,hange around aliimi~iuni I>V tliftercntii~l t1ii:rm;il ani~lysis. Therefore, the mechanochemical phenomina of ground tiickite werc3 h e to the local c~l~mge around aluminum \IT. the prolonged grinding.

  • PDF

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.

Optimal Design of the Monolithic Flexure Mount for Optical Mirror Using Response Surface Method (반응표면법을 이용한 광학미러용 일체형 유연힌지 마운트 최적설계)

  • Kyoungho Lee;Byounguk Nam;Sungsik Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2023
  • An optimal design of a simple beam-shaped flexure hinge mount supporting an optical mirror is presented. An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. This side-supporting mount is flexible in the radial direction and rigid for the remaining degrees of freedom to support the mirror without transferring thermal load. Through thermo-elastic, optical and eigenvalue analysis, opto-mechanical performance was predicted to establish the objective functions for optimization. The key design parameters for this flexure are the thickness and length. To find the optimal values of design parameters, response surface analysis was performed using the design of experiment based on nested FCD. Optimal design candidates were derived from the response surface analysis, and the optimal design shape was confirmed through Opto-mechanical performance validation analysis.

Comparative Wood Anatomy of Stem and Root in Korean-grown Yellow-poplar (Liriodendron tulipipfera L.)

  • Lee, Mi-Rim;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.406-419
    • /
    • 2011
  • This study was carried out to offer basic information on the wood anatomy of domestic yellow-poplar (Liriodendron tulipifera L.), a new plantation species selected by Korea Forest Service as one of the promising hardwood and bioenergy sources of the future, through comparison of stem wood with root wood in the qualitative and quantitative features. In the qualitative anatomical features, growth rings were distinct in stem wood but relatively less distinct in root wood. And stem wood appeared to have pores in radial multiples of 2 to 5, sometimes clusters but root wood to have pores in radial multiples of 2 to 3, rarely clusters. And numbers of bars in scalariform perforation plates were somewhat numerous in vessel elements of root wood than in those of stem wood. Interestingly, on the other hand, more extraneous materials in the wood rays of tap root than in those of lateral root and stem were confirmed in the chemical composition analyses. In the quantitative anatomical features, pore densities were significantly greater but vessel elements were considerably narrower in stem wood than in root wood. Vessel elements and wood fibers of root wood were considerably longer than those of stem wood. Rays were somewhat more numerous in stem wood than in root wood, and only ray heights of stem wood were more or less greater in cell numbers but both ray heights and widths of stem wood were lower in dimension than those of root wood. The anatomical differences between stem wood and root wood were thought to be associated with different growth environments between the stem above ground and the root below ground.

Consolidation Analysis for PVD Installed Soft Ground Using a Modified Theoretical Solution (변형된 이론해를 이용한 연직배수재 설치 지반의 압밀해석)

  • Hong, Sung-Jin;Kim, Dong-Hee;Kim, Yun-Tae;Kim, Hyung-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.41-53
    • /
    • 2012
  • As the permeability of soil adjacent to the vertical drain has a decisive effect on the rate of consolidation, the permeability of smear zone governs the rate of radial consolidation of PVD installed soft ground. In this study, a method was suggested to analyze the radial consolidation, based on consolidation characteristics of remolded clay, and was used to evaluate the consolidation of soft clay layer in Busan Newport. The suggested method provides more reliable consolidation behaviors than the conventional approach, which is based on the consolidation characteristics of undisturbed clay. The suggested method is also observed to be relatively insensitive to the uncertainty of $k_h/k_s$. The comparison between the analysis and field measurement revealed that the suggested method provided a reliable prediction on the rate of consolidation of PVD installed Busan new port clay and that an appropriate extent of smear zone was evaluated as about $3d_w$ by back analysis.

Prediction of replacement period of shield TBM disc cutter using SVM (SVM 기법을 이용한 쉴드 TBM 디스크 커터 교환 주기 예측)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.641-656
    • /
    • 2019
  • In this study, a machine learning method was proposed to use in predicting optimal replacement period of shield TBM (Tunnel Boring Machine) disc cutter. To do this, a large dataset of ground condition, disc cutter replacement records and TBM excavation-related data, collected from a shield TBM tunnel site in Korea, was built and they were used to construct a disc cutter replacement period prediction model using a machine learning algorithm, SVM (Support Vector Machine) and to assess the performance of the model. The results showed that the performance of RBF (Radial Basis Function) SVM is the best among a total of three SVM classification functions (80% accuracy and 10% error rate on average). When compared between ground types, the more disc cutter replacement data existed, the better prediction results were obtained. From this results, it is expected that machine learning methods become very popularly used in practice in near future as more data is accumulated and the machine learning models continue to be fine-tuned.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

Non-Metric Digital Camera Lens Calibration Using Ground Control Points (지상기준점을 이용한 비측량용 카메라 렌즈 캘리브레이션)

  • Won, Jae-Ho;So, Jae-Kyeong;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.173-180
    • /
    • 2012
  • The most recent, 80 mega pixels digital camera appeared through the development of digital technology, and nonmetric digital cameras have been using in various field of photogrammetry. In this study, we experimented lens calibration using aerial photographs and ground control points. The aerial photographs were taken a non-metric digital camera which is CMOS(Complementary Metal Oxide Semiconductor) 21.1 mega pixels sensor and 35mm lens at a helicopter. And the ground control points were selected on the 1:1,000 plotting origin data. As a result, we calculated focal length, PPA(Principal Point of Autocollimation) and symmetric radial distortion coefficients from the lens. Also, RMSE(root mean square error) and maximum residual of the ground control points from the aerial triangulation were compared before and after calibration. And we found that the accuracy of the after calibration was improved very significantly.

Closely Spaced Two-Element Folded-Dipole-Driven Quasi-Yagi Array

  • Ta, Son Xuat;Kang, Sang-Gu;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • This paper presents a closely spaced two-element folded-dipole-driven quasi-Yagi array with low mutual coupling between adjacent elements. The antenna utilizes a T-junction power divider as the feeding network, with an input impedance of $50{\Omega}$. A microstrip-stub is added to the ground plane in the middle of the two elements to improve the mutual coupling characteristics. The folded dipole driver is connected to a $50{\Omega}$ microstrip line via a broadband microstrip-to-coplanar stripline transition with a quarter radial stub. A mutual coupling of less than -22 dB is measured between two folded-dipole-driven quasi-Yagi antennas with a center-to-center spacing of 30 mm ($0.55{\lambda}_0$ at 5.5 GHz). The proposed quasi-Yagi array yields a measured bandwidth of 4.75~6.43 GHz for the -10 dB reflection coefficient and a gain of 6.14~7.12 dBi within the bandwidth range.

Assessment of Consolidation Properties Using Modified Oedometer for Radial Drainage Condition (개량형 수평배수 압밀시험 장치에 의한 압밀특성 평가)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.143-150
    • /
    • 2009
  • Material functions about effective stress, permeability, coefficient of consolidation and coefficient of volume change has important role to predict consolidation velocity and settlement of soft ground. Modified oedometer for radial drainage is adapted to find out material functions on laboratory tests. Undisturbed sample for laboratory tests were taken from construction sites of industrial complexes on southern coastal area which consists of upper dredged fill and lower original clay layer. For different drainage condition in consolidation process void ratio, effective stress, permeability, coefficient of consolidation and coefficient of volume change has been assessed with results of existing standard oedometer tests. It is worthwhile to note that consolidation material functions could be expressed as regression equation by Stark (2005), heterogeneity for permeability could be assessed from these relationships.

  • PDF