• Title/Summary/Keyword: Radial ground.

Search Result 132, Processing Time 0.023 seconds

A Study on the efficiency of AM Broadcast Transmitting Antenna in assordance with a low noise Area (저잡음지역(3.5mV/m)의 AM방송송신 안테나 효율에 관한 연구)

  • 이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.5 no.1
    • /
    • pp.40-43
    • /
    • 1980
  • The Service area in AM Broadcast Changes according to its transmitting frequency. It is also reduced by increase of the citizen noise. As a result, the efficency of transmitting Antenna should be higer in a low noise region as long as AM Broadcast does not build up its transmitting power. The efficiency of transmitting Antenna can also function as a low resistance connection to earth. Most Vertical Antenna used in the AM standard Broadcast band in the Korea have extensive radial ground systems beneath them which serve as image plane.

  • PDF

Effects of Soil Discharges on the Impulsive Ground Impedance of Ground Rod with Needles (침상 접지봉의 임펄스접지임피던스에 미치는 지중방전의 영향)

  • Yoo, Yang-Woo;Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.98-105
    • /
    • 2014
  • Soil discharges near the ground rod play an important role to reduce the ground potential rise and the ground impedance and to help the fault current to spread into the earth. This paper presents the effects of soil discharges on the transient and conventional ground impedances when the lightning impulse voltage was applied to a ground rod with radial needles. The current-voltage (I-V)curves and transient ground impedance curves were calculated based on the measured current and potential traces. Soil discharge behaviors related to I-V curves and transient ground impedance curves were analyzed as a function of the magnitude of lightning impulse voltages. As a result, the soil discharges occurred near the ground electrode contribute to the reduction of conventional ground impedance and limits the ground potential rise effectively under lightning impulse voltages.

Dynamic soil-structure interaction studies on 275m tall industrial chimney with openings

  • Jayalekshmi, B.R.;Thomas, Ansu;Shivashankar, R.
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.233-250
    • /
    • 2014
  • In this paper, a three dimensional soil-structure interaction (SSI) is numerically simulated using finite element method in order to analyse the foundation moments in annular raft of tall slender chimney structures incorporating the effect of openings in the structure and the effect of soil flexibility, when the structure-soil system is subjected to El Centro (1940) ground motion in time domain. The transient dynamic analysis is carried out using LS-DYNA software. The linear ground response analysis program ProShake has been adopted for obtaining the ground level excitation for different soil conditions, given the rock level excitation. The radial and tangential bending moments of annular raft foundation obtained from this SSI analysis have been compared with those obtained from conventional method according to the Indian standard code of practice, IS 11089:1984. It is observed that tangential and radial moments increase with the increase in flexibility of soil. The analysis results show that the natural frequency of chimney decreases with increase in supporting soil flexibility. Structural responses increase when the openings in the structure are also considered. The purpose of this paper is to propose the need for an accurate evaluation of the soilstructure interaction forces which govern the structural response.

Analysis of Stress Transfer Mechanism of SCP-Reinforced Composite Ground (SCP 복합지반의 응력전이거동 해석)

  • Kim, Yun-Tae;Park, Hyun-Il;Lee, Hyung-Joo;Kim, Sang-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.227-234
    • /
    • 2004
  • Sand compaction pile (SCP) method is composed of compacted sand pile inserted into the soft clay deposit by displacement method. SCP-reinforced ground is composite soil which consists of the SCP and the surrounding soft soil. When a surcharge load is applied on composite ground, time-dependent behavior occurs in the soft soil due to consolidation according to radial flow toward SCP and stress transfer also takes place between the SCP and the soft soil. This paper presents the numerical results of cylindrical composite ground that was conducted to investigate consolidation characteristics and the stress transfer mechanism of SCP-reinforced composite ground. The results show that the consolidation of soft clay has a significant effect on the stress transfer mechanism and stress concentration ratio of composite ground

  • PDF

Effect of the Design Parameters of Geothermal Heat Exchanger Design Length (설계변수가 수직밀폐형 지중열교환기 설계길이에 미치는 영향)

  • Min, Kyong-Chon;Choi, Jae-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.10-15
    • /
    • 2011
  • A ground loop heat exchanger for the ground source heat pump system is the core equipment determining the thermal performance and initial cost of the system The length and performance of the heat exchanger is dependent on the ground thermal conductivity, the operation hours, the ground loop diameter, the grout, the ground loop arrangement, the pipe placement and the design temperature. The result of this simulation shows that higher thermal conductivity of grouting materials leads to the decrease length of geothermal heat exchanger from 100.0 to 84.4%.

Probability-based design charts for stone column-improved ground

  • Deb, Kousik;Majee, Anjan
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.539-552
    • /
    • 2014
  • A simplified probability-based design charts for stone column-improved ground have been presented based on the unit cell approach. The undrained cohesion ($c_u$) and coefficient of radial consolidation ($c_r$) of the soft soil are taken as the most predominant random variables. The design charts are developed to estimate the diameter of the stone column or the spacing between the stone columns by employing a factored design value of $c_r$ and $c_u$ so as to satisfy a specific probability level of the target degree of consolidation and/or a target safe load that needs to be achieved in a specified timeframe. The design charts can be used by the practicing engineers to design the stone column-improved ground by considering consolidation and /or bearing capacity of the improved ground.

EFFECTIVENESS ANALYSIS OF GROUND IMPROVEMENT TREATED BY DYNAMIC CONSOLIDATION (동압밀공법을 이용한 지반개량 사례연구)

  • 양정수;손준익
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.137-144
    • /
    • 1992
  • This paper reports a case study of dynamic consolidation. The objective of the study is to evaluate the effectiveness of ground improvement at the site for Hyundai Petrochemical Compound constructed at Daesan-Myeon, Seosan-Gun in the western shores of Korea. The site ground was prepared by filling on the existing soft marine deposit which consists of a loose granular soil layer and a medium stiff clay layer. For the stabilization of site ground, the compaction was executed in three different procedures with same pounder weigh, drop height and imprint spacing. The post investigation showed that the object was successfully achieved indicating a significant increase of bearing capacity of the treated ground. In this study the effectiveness of dynamic consolidation is evluated for various factors the applied energy, temping sequences, the radial distance from the imprint location and the depth of bed rock.

  • PDF

Development of Horizontal Boring Equipment for Radial Collector Wells (방사형 집수정을 위한 수평천공장치 개발)

  • Park, Geun-Wu;Jeong, Gyeong-Hwan;Lee, Chung-Hun;Kwon, June-Yong;Kim, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.905-913
    • /
    • 2008
  • The water resource depending on mostly surface water has many problems, such as contaminated and unpredicted contamination event. For this reason, it has been employed highly technical treatment method for them, such as ground water dam and river bank filtration. it has been developed the radial collector wells in kind of bank filtration to increase efficiency for in-taking the water resource insead of the vertical well needed many wells to take more resource. But it has many problems with the incumbent method to bore the horizontal hole for radial collector wells, such as filling with the filter material outside of a strainer by watering, jamming as retrieving the casing tube with the filter material, eccentric boring etc. To reduce the problems of incumbent equipment, it has been developed the horizontal boring equipment and performed the field trial tests several times, which have bits and water jetting system with rotating the cone-shaped front to be excavated easily. In this paper, it was compared the brand-new with the incumbent non-rotating pressing insertion method. Also it was shown the problems of the incumbent method was reduced effectively.

  • PDF

A Method of Simulating the Frequency-dependent Ground Impedance of Counterpoises (매설지선의 접지임피던스의 주파수의존성에 대한 모사기법)

  • Lee, Bok-Hee;Shin, Hee-Kyung;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.73-79
    • /
    • 2012
  • A counterpoise is commonly employed in grounding systems installing near the ground surface of low resistivity soils and radial-type counterpoises are used in the limited space. Recently some studies on the evaluation of ground impedance of paralleling ground electrodes have carried out, but the data for providing the frequency-dependent ground impedances considering potential interferences are not yet sufficient. In order to provide the information about the design of grounding systems for surge protection, the simulations of the frequency-dependent ground impedance of various shaped counterpoises are carried out by using the distributed parameter circuit model including the effect of potential interferences. This paper presents the theoretical simulations and actual experiments of the frequency-dependent ground impedance of paralleling and 3 or 4-arms star counterpoises. The accuracy of the simulation methodology is examined by the comparison with the measured results, and the results show a good agreement between the simulation and the experiment.

An Experimental Study of Ground Motion under the Dynamic Load (동하중재하시 지반진동에 관한 실험적 연구)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.126-131
    • /
    • 1997
  • Recently, the ground motion occurred by vehicles or trains has been recognized one of the major factors of damage of structures nearly the motion source. To isolate the environments from ground motions, it is necessary to understand the wave propagation in half spaces. Especially, Rayleigh wave is the primary concern because it transmits a major portion of the total source energy and decays the energy more slowly with response to distance than the other waves. In this study, the preliminary data(wave length and damping effect) to design the isolating system are obtained. For this, a field dynamic test is performed, using the exciter which can generate the 100kN vertical cyclic load in the range of 1-60 Hz is used. The fifteen accelerometers to measure the ground response are set up in 3 radial direction at intervals of 10 meters in each row. The wave lengths are calculated using the distance and the phase between the measuring points. The damping effects of the Rayleigh-wave are also observed from the experiments.

  • PDF