DOI QR코드

DOI QR Code

Probability-based design charts for stone column-improved ground

  • Deb, Kousik (Department of Civil Engineering, Indian Institute of Technology Kharagpur) ;
  • Majee, Anjan (Department of Civil Engineering, Indian Institute of Technology Kharagpur)
  • Received : 2013.09.28
  • Accepted : 2014.07.23
  • Published : 2014.11.25

Abstract

A simplified probability-based design charts for stone column-improved ground have been presented based on the unit cell approach. The undrained cohesion ($c_u$) and coefficient of radial consolidation ($c_r$) of the soft soil are taken as the most predominant random variables. The design charts are developed to estimate the diameter of the stone column or the spacing between the stone columns by employing a factored design value of $c_r$ and $c_u$ so as to satisfy a specific probability level of the target degree of consolidation and/or a target safe load that needs to be achieved in a specified timeframe. The design charts can be used by the practicing engineers to design the stone column-improved ground by considering consolidation and /or bearing capacity of the improved ground.

Keywords

References

  1. Alamgir, M., Miura, N., Poorooshasb, H.B. and Madhav, M.R. (1996), "Deformation analysis of soft ground reinforced by columnar inclusions", Comput. Geotech., 18(4), 267-290. https://doi.org/10.1016/0266-352X(95)00034-8
  2. Alonso, J. and Jimenez, R. (2011), "Reliability analysis of stone columns for ground improvement", Georisk, ASCE, 493-500.
  3. Ambily, A.P. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotech. Geoenviron. Eng., ASCE, 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405)
  4. Baecher, G.B. and Christian, J.T. (2003), Reliability and Statistics in Geotechnical Engineering, John Wiley & Sons Ltd., England, UK.
  5. Balaam, N.P. and Booker, J.R. (1981), "Analysis of rigid raft supported by granular piles", Int. J. Numer. Anal. Method. Geomech., 5(4), 379-403. https://doi.org/10.1002/nag.1610050405
  6. Bari, M.W. and Shahin, M.A. (2014), "Probabilistic design of ground improvement by vertical drains for soil of spatially variable coefficient of consolidation", Geotext. Geomembr., 42(1), 1-14. https://doi.org/10.1016/j.geotexmem.2013.11.001
  7. Bari, Md. W., Shahin, Md. A., and Nikraz, H.R. (2013), "Probabilistic analysis of soil consolidation via prefabricated vertical drains", Int. J. Geomech. ASCE, 13(6), 877-881. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000244
  8. Black, J.A., Sivakumar, V., Madhav, M.R. and Hamill, G.A. (2007), "Reinforced stone columns in weak deposits: Laboratory model study", J. Geotech. Geoenviron. Eng. ASCE, 133(9), 1154-1161. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1154)
  9. Bouassida, M., Jellali, B. and Porbaha, A. (2009), "Limit analysis of rigid foundations on floating columns", Int. J. Geomech. ASCE, 9(3), 89-101. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:3(89)
  10. Bowles, J.E. (1996), Foundation Analysis and Design, (5th Edition), McGraw-Hill, New York, NY, USA.
  11. Chang, C.S. (1985), "Uncertainty of one-dimensional consolidation analyses", J. Geotech. Eng., ASCE, 111(12), 1411-1424. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1411)
  12. Deb, K. (2008), "Modelling of granular bed-stone column-improved soft soil", Int. J. Numer. Anal. Method. Geomech., 32(10), 1267-1288. https://doi.org/10.1002/nag.672
  13. Deb, K. and Dhar, A. (2011), "Optimum design of stone column-improved soft soil using multiobjective optimization technique", Comput. Geotech., 38(1), 50-57. https://doi.org/10.1016/j.compgeo.2010.10.005
  14. Deb, K. and Dhar, A. (2013), "Parameter estimation for a system of beam resting on stone columnreinforced soft soil", Int. J. Geomech., ASCE, 13(3), 222-233. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000203
  15. Deb, K., Basudhar, P.K. and Chandra, S. (2007), "Generalized model for geosynthetic-reinforced granular fill-soft soil with stone columns", Int. J. Geomech., ASCE, 7(4), 266-276. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:4(266)
  16. Deb, K., Samadhiya, N.K. and Namdeo, J.B. (2011), "Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay", Geotext. Geomembr., 29(2), 190-196. https://doi.org/10.1016/j.geotexmem.2010.06.004
  17. Elshazly, H., Hafez, D. and Mossaad, M. (2007), "Settlement of circular foundations on stone column reinforced grounds", Ground Improve., 11(3),163-170. https://doi.org/10.1680/grim.2007.11.3.163
  18. Griffiths, D.V., Huang, J. and Fenton, G.A. (2009), "Influence of spatial variability on slope reliability using 2-D random fields", J. Geotech. Geoenviron. Eng., ASCE, 135(10), 1367-1378. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099
  19. Han, J. and Ye, S.L. (2000), "Simplified method for consolidation rate of stone column reinforced foundations", J. Geotech. Environ. Eng., ASCE, 127(7), 597-603.
  20. Hong, H.P. and Shang, J.Q. (1998), "Probabilistic analysis of consolidation with prefabricated vertical drains for soil improvement", Can. Geotech. J., 35(4), 666-677. https://doi.org/10.1139/t98-031
  21. IS 15284 (Part 1) (2003), Design and Construction for Ground Improvement - Guidelines: part 1 stone column.
  22. Krishna, A.M., Madhav, M.R. and Latha, G.M. (2007), "Densification effect of granular piles on settlement response of treated ground", Ground Improve., 11(3), 127-136. https://doi.org/10.1680/grim.2007.11.3.127
  23. Lee, J.S. and Pande, G.N. (1998), "Analysis of stone-column reinforced foundations", Int. J. Numer. Anal. Method. Geomech., 12(12), 1001-1020.
  24. Lee, I.K., White, W. and Ingles, O.G. (1983), Geotechnical Engineering, Pitman, London, UK.
  25. Madhav, M.R. and Vitkar, P.P. (1978), "Strip footing on weak clay stabilized with granular trench or piles", Can. Geotech. J., 15(4), 605-609. https://doi.org/10.1139/t78-066
  26. Mitchell, J.K. (1981), "Soil improvement - State of the art report", Proceedings of the 10th ICSMFE, Stockholm, The Netherlands, June, Volume 4, pp. 509-565.
  27. Muir-Wood, D., Hu, W. and Nash, D.F.T. (2000), "Group effects in stone column foundations: Model tests", Geotechnique, 50(6), 689-698. https://doi.org/10.1680/geot.2000.50.6.689
  28. Poorooshasb, H.B. and Meyerhof, G.G. (1997), "Analysis of behavior of stone columns and lime columns", Comput. Geotech., 20(1), 47-70. https://doi.org/10.1016/S0266-352X(96)00013-4
  29. Shahu, J.T. and Reddy, Y.R. (2011), "Clayey soil reinforced with stone column group: model tests and analyses", J. Geotech. Geoenviron. Eng., ASCE, 137(12), 1265-1274. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000552
  30. Zhou, W., Hong, H.P. and Shang, J.Q. (1999), "Probabilistic design method of prefabricated vertical drains for soil improvement", J. Geotech. Geoenviron. Eng., 125(8), 659-664. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(659)

Cited by

  1. Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers vol.19, pp.4, 2019, https://doi.org/10.12989/gae.2019.19.4.329