• 제목/요약/키워드: Radial Uniformity

검색결과 50건 처리시간 0.023초

배기의 유속분포가 CDPF의 재생 시 비정상적 열적 거동에 미치는 영향 (The Effect of Flow Distribution on Transient Thermal Behaviour of CDPF during Regeneration)

  • 정수진;이점주;최창호
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.10-19
    • /
    • 2009
  • The working of diesel particulate filters(DPF) needs to periodically burn soot that has been accumulated during loading of the DPF. The prediction of the relation between an uniformity of gas velocity and soot regeneration efficiency with simulations helps to make design decisions and to shorten the development process. This work presents a comprehensive combined 'DOC+CDPF' model approach. All relevant behaviors of flow fluid are studied in a 3D model. The obtained flow fields in the front of DPF is used for 1D simulation for the prediction of the thermal behavior and regeneration efficiency of CDPF. Validation of the present simulation are performed for the axial and radial direction temperature profile and shows goods agreement with experimental data. The coupled simulation of 3D and 1D shows their impact on the overall regeneration efficiency. It is found that the flow non-uniformity may cause severe radial temperature gradient, resulting in degrading regeneration efficiency.

Magnetic Flux Density Distributions and Discharge Characteristics of a Newly Designed Magnetized Inductively Coupled Plasma

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.360-365
    • /
    • 2015
  • Spatial distributions of magnetic flux density in a newly designed magnetized inductively coupled plasma (M-ICP) etcher were investigated. Radial and axial magnetic flux densities as well as the magnetic flux density on the center of the substrate holder were controllable by placing multiple circular coils around the etcher properly. The plasma density non-uniformity in M-ICP (25 Gauss) can be reduced (1.4%) compared to that in ICP (16.7%) when the neutral gas pressure was 0.67 Pa and a right-hand circularly polarized wave (R-wave) can be propagated in to the etcher by making magnetic flux density increases both radially and axially from the center of the substrate holder.

수치모델을 이용한 pulsed dc bias ICP장치의 플라즈마 특성 해석 (Numerical Modeling of Plasma Characteristics of ICP System with a Pulsed dc Bias)

  • 주정훈
    • 한국표면공학회지
    • /
    • 제43권3호
    • /
    • pp.154-158
    • /
    • 2010
  • Numerical analysis is done to investigate the effects of pulse bias on the plasma processing characteristics like ion doping and ion nitriding by using fluid dynamic code with a 2D axi-symmetric model. For 10 mTorr of Ar plasma, -1 kV of pulse bias was simulated. Maximum sheath thickness was around 20 mm based on the electric potential profile. The peak electron temperature was about 20 eV, but did not affect the averaged plasma characteristics of the whole chamber. Maximum ion current density incident on the substrate was 200 $A/m^2$ at the center, but was decreased down to 1/10th at radius 100 mm, giving poor radial uniformity.

전단 유동중에 놓인 스테이터에 의한 유기속도 (Velocities Induced by Stator Arrays in a Class of Shear Flows)

  • 박의동
    • 대한조선학회지
    • /
    • 제27권2호
    • /
    • pp.13-20
    • /
    • 1990
  • 선미 반류중에 놓인 스테이터에 의하여 유기되는 속도성분을 전단유동일 경우와 전단 유동이 아닌 경우에 대하여 다루었다. 스테이터 날개에 의한 속도 성분 계산에는 양력선 이론이 사용되었으며 전단성분은 반류성분이 반경의 로그 함수로 표시 가능한 선형의 평균 반류 분포에 대한 반경 방향의 기울기로 나타내었다. 그리고 기본이론은 점성이 없는 경우의 오일러 방정식에 기초를 두었다. 계산결과, 전단 유동의 영향은 허브에 가까울수록 커졌으며 반류의 불균일을 감소시키는데는 스테이터 날개에 피치를 분포하는 것이 가장 효과적이었다.

  • PDF

Gimballing Flywheel and its Novel Reluctance Force-type Magnetic Bearing with Low Eddy Loss and Slight Tilting Torque

  • Tang, Jiqiang;Wang, Chun'e;Xiang, Biao
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.432-442
    • /
    • 2013
  • For magnetically suspended flywheel (MSFW) with gimballing capability, demerits of Lorentz force-type magnetic bearings and common reluctance force-type magnetic bearings are analyzed, a novel reluctance forcetype magnetic bearing (RFMB) including radial and axial magnetic bearing units with 4 separate biased permanent magnets and two conical stators is presented. By equivalent magnetic circuits' method, its magnetic properties are analyzed. To reduce the eddy loss, it was designed as radial poles with shoes and its rotor made of Iron-based amorphousness. Although the uniformity of magnetic flux density in the conical air gap determines mainly the additional tilting torque, the maximum additional tilting torques is 0.05Nm and the rotor tilting has no influence on its forces when the rotor tilts or the maximum changes does not exceed 14% when the rotor drifts and tilts simultaneously. The MSFW with this RFMB can meet the maneuvering requirement of spacecraft theoretically.

Sausage Waves in a Plasma Cylinder with a Surface Current

  • Lim, Daye;Nakariakov, Valery M.;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.81.1-81.1
    • /
    • 2019
  • Linear sausage oscillations of a cylinder embedded in a plasma with an azimuthal magnetic field, created by a current on the surface of the cylinder, are studied. Such a plasma configuration could be applied to modelling demonstrate that the lowest radial harmonic of the sausage mode is in the trapped regime for all values of the parallel wave number. In the long-wavelength limit, phase and group speeds of this mode are equal to the Alfven speed in the external medium. It makes the oscillation period to be determined by the ratio of the parallel wavelength, e.g., double the length of an oscillating loop, to the external Alfven speed, allowing for its seismological estimations. The application of the results obtained to the interpretation of long-period (longer than 20-30 s) oscillations of emission intensity detected in solar coronal structure, gives reasonable estimations of the external Alfven speed. Cutoff values of the parallel wavenumber for higher radial harmonics are determined analytically. Implications of this finding to the observational signatures of fast magnetoacoustic wave trains guided by the plasma non-uniformity are discussed.

  • PDF

입제비료 살포기의 출구조절에 의한 균일도의 분석과 제어 (Analysis and Control of Uniformity by the Feed Gate Adaptation of a Granular Spreader)

  • 권기영
    • Journal of Biosystems Engineering
    • /
    • 제34권2호
    • /
    • pp.95-105
    • /
    • 2009
  • A method was proposed which employed control of the drop location of fertilizer particles on a spinner disc to optimize the spread pattern uniformity. The system contained an optical sensor as a feedback mechanism, which measured discharge velocity and location, as well as particle diameters to predict a spread pattern of a single disc. Simulations showed that the feed gate adaptation algorithm produced high quality patterns for any given application rate in the dual disc spreader. The performance of the feed gate control method was assessed using data collected from a Sulky spinner disc spreader. The results showed that it was always possible to find a spread pattern with an acceptable CV lower than 15%, even though the spread pattern was obtained from a rudimentary flat disc with straight radial vanes. A mathematical optimization method was used to find the initial parameter settings for a specially designed experimental spreading arrangement, which included the feed gate control system, for a given flow rate and swath width. Several experiments were carried out to investigate the relationship between the gate opening and flow rate, disc speed and particle velocity, as well as disc speed and predicted landing location of fertilizer particles. All relationships found were highly linear ($r^2$ > 0.96), which showed that the time-of-flight sensor was well suited as a feedback sensor in the rate and uniformity controlled spreading system.

나노입자 제거용 Far Field 메가소닉 개발 (Development of a Far Field type Megasonic for Nano Particle Removing)

  • 이양래;김현세;임의수
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.

화재 진압용 스프링클러 헤드 유형에 따른 살수 균일도 분석 (Analysis of Water Flux Uniformity for Various Fire Sprinkler Head Type)

  • 방새미;안찬섭;김태훈
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.97-104
    • /
    • 2023
  • A sprinkler is a fire suppression system that extinguishes combustible materials in the early stages of a fire, creating a spray. However, spray formation method of the sprinkler can result in an uneven distribution of water spray on the surface of combustible materials. It is necessary to ensure a consistent water flux density regardless of the spray direction and angle. In this study, the water flux distribution was analyzed for the various types of sprinkler head: circular, flush, pendent, and upright types. All sprinkler heads have a K-factor of 80 LPM/(0.1MPa)0.5. In this study, water collection cubes were used to examine the water flux distribution. The upright type sprinkler head showed a low standard deviation in total sprayed area, indicating a high level of uniformity. The upright type head showed the lowest standard deviation in the radial direction, and also showed the lowest standard deviation in the azimuthal direction. Upright sprinkler head has no obstructing structure along the path of droplets after they are generated. For this reason, upright sprinkler head showed the most uniform water flux distribution on the floor.