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Velocities Induced by Stator Arrays in a
Class of Shear Flows

Abstract

The interaction of the flows induced by stator blades with a ship-like wake is discussed to
obtain the flow components of each with and without radial shear.

The flow induced by stator blades is modeled by lifting line theory and the shear is taken to
be provided by the radial gradient of the peripheral mean axial flow approximated by a loga-
rithmic function of radius for a class of vessels. And the theory is based on the linearized Euler
equations in the absence of viscosity.

The results show that shear effects are relatively large at inner radii and the distribution of

blade pitch angles is most effective in reducing non-uniformity.
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produced in the region of the propeller by the hull

1. Introduction of a ship moving on a straight course at constant

speed. Such incident hull flows have a peripheral

This study is directed principally at the determina-  mean axial component which varies radially and is
tion of the spatial harmonics of the velocity com- assumed to be independent of axial position. The

ponents downstream of an array of atator blades presence of this shear, _a;_(rj’ gives rise to addi-
which are immersed in a spatially varying flow as tional velocity components because of the coupling
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between itself and the velocity field induced by the
stators.

One of earliest studies of the distortion of inviscid,
incompressible onset flows with vorticity by the flow
about a body was that of Young and Maas(1] in
1936, who calculated the effect of the dividing stream
line about a pitot tube due to a lateral shear in the
incident stream. In 1944 Von Karman and Tsien(2]
analyzed the flow about a wing in a stream with
transverse and vertical shears. While they gave no
numerical results, their analysis indicated that the
coupling of the shear and the transverse perturbation
velocity grows without bound far downstream. It
was their opinion that nonetheless the results would
be useful in the vicinity of the wing. In the 1950°s
Lighthill(33042(51(6] dealt with fundamental aspects
of flows generated by singularities intracting with
generally weak shears. He also noted downstream
divergences.

In regard to propeller hydrodynamics there was
no attention to shear intractions until 1976 when
Breslin[7) proposed a study of actuator disc-shear
flow intraction in response to difficulties experienced
by the
powering characteristics from self-propelled model

U.S. Navy in prediction of submarine
tests. As a result, several analyses were made by
Goodman(8), Goodman and Valentine(9].

isons of Goodman’s theory with water tunnel meas-

Compar-

urements were made by Goodman and Breslin[10]
which displayed very good agreement when account
was taken of the non-linear induction of the mode-
rately loaded propellers. A significant advance was
made by Huang and Groves(11] using a finite diffe-
rence method for the flow on a body of revolution
with and without propeller induction.

The present theory is based on the Euler’s equation
of motion for an incompressible, inviscid fiuid in
which only the radial shear is retained as characte-
rizing the dominant vorticity in the hull-generated

non-uniform flow. A solution is obtained for a class
i—-L _d_). 1- =0
dr? r dr/ U@
This class of hull wake flow has been found to yield

of shear flows satisfying (

quite reasonable agreement with measurements made

on models. The stator blades are represented by thin
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body theory in regard to their thickness effects and
by lifting line theory for their loading induced
flow.

Attention is focused on the spatial harmonics of
the axial and tangential components immediately
downstream of the stator array with variations of
angular position of stator arrays and blade pitch
angles because one of the purposes of the stator is
to ameliorate the non-uniformity of the flow at the

propeller plane,

2. Induced Velocities due to Lift

2.1 Formulation of the problem
We consider inviscid, incompressible and steady
incident main flow whose axial component varies
» U=U(r),

w are the axial, tangential and radial components

with radius, i.e and in which »,v and
induced by a stator array immersed in this flow.
These components are assumed to be small relative
to U.

In cylinderical coordinates(zx,r,y) as shown in

Figure 1, the linearized Euler equations are,

_— du__ dU 1 2 _ :
axial; —U(r)—=— 7 w+—— o= 2-1
tangential; —U() + 1 ap

pr or
__FG, 0 ﬁ(x)é(r—.v)é(r—ﬂ) (2-2)
0 r
radial; ~U(r)-22L+1 % (2-3)

where F(s,6) is the lift force per unit length gener-
ated by a stator blade element in tangential direction.

The continuity equation is,

Ship Hull

Statar

Prapeller

Fig. 1 Cylinderical coordinates at stator and
propellar planes
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ou | w

ow 1 ov _ _
oz r " ar Tt oy 0 (2-4)
Operating on (2-1), (2-2) and (2-3) by, 7?;, %
o 8 - ing in L. times (2.
o respectively and adding in , times (2

3), and using (2-4) yields,
rip—-2- (7 U-rp)=—EE 0 5(2)6(r—5) (r—0)

By introducing a new function ¢(x, r, 7; s, 6),

where ¢= V(r)P, and V(r):—U%ﬁ’
rp—( L) ==X F(s,005(2)3(r )5 (r~0)

(2-5)
Equation (2-5) can be converted to an integral
equation by using the general form of the solution

of a Poisson equation for an unbounded domain.[12]
—__L ’ 7rv(r’)
= f dxf drf dy ——r— L Vo
y(x r ) o1 r'dr’
+ f~w fo( e

fﬂ dr' V(+'YF(s, 8) i(:f_’ﬁi(i_;{)i(r__jl
(2-6)
where R= V(z =2V 477+ (7 ) —2rr cosG—1)

From experimental wake data for a class of bodies,
as shown in Figure 2. we see that the distribution
of dimensicnless nominal wake is well approximated
in the disc region by

Ury _ 1 *
U. 130 LI G/Ry T

=1 &*r

where R, ; radius of stator blades, and

-7

6%=1.29R; ; boundary layer thickness
For this class of wake distributions given in (2-7),
PPV=0  except at r=5*
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Fig. 2 Experimental wake data and its approximation
Hence (2-6) is changed to,
_ 1 ~ e T'dﬁ/_ ® ’
¢—75—jﬂﬁx O—Ga2fndrVU)FG,®
8(x)3(r'—5)8' (' —8)
R

Since lift force acts along the entire blade, from
hub to tip, the total perturbation pressure becomes,

p=—U) (*ds Fen) 5 (1)

4 vs UG 9"\ R
or,
s y= ) [Pds  F(s,0) 3 (1
Pa,riyis, 0)=—2-= | — UGs)  or (R>

Induced velccities can be calculated by using the
pressure equation, together with boundary conditions
far upstream. These conditions are,

u=v=w=0

P=0

2.2 Induced velocities

at xz—co 2-8)
2.2.1 Radial Component
Integrating (2-3) over z, from & to oo, and using
the pressure equation and the boundary condition,

we have

(2-9)

—_ 1 bds F(s,8) (r*—s* sin (y—6) z }
dzp J & U(s) [ri+s*—2rscos (—0)]2 VI +52—2rs cos (7—8)
w1 S_F_(g,f)_ r—s cos (y—6) zr sin (—6)
dzp U(s)  rP+s*—2rs cos (—0) [at+ri+s2—2rs cos (;—0)152
" U’(r) bds F(s,8) rsin(r—4@) { 1— x o }
Ao U(r) U(s) ri+-s2—2rs cos (r—8) Valtrist—2rs cos (71—8)

2.2.2. Axial Component

Integrating (2-1) over z, from x to oo, and using the boundary condition and the expressions for w

and P, we obtain

y=—_1 b si(s,ﬁ) rsin(r—6)
4z J n UGs) (a2 +r*+s2—2rs cos (1—0)15%
+ds- U (P g5 Fls: ) (r?—s*) sin (r—9)

drcU J & s U(s)
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Lz +7r?+s—2rs cos (7—6)12 o=

z¥ 715" —2rs cos (r—6)}
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2 U (s F(s,6) r—s cos (r—49)
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r sin (r—8)

T azpU 1Y UG

_ (U (P, F(s,8)
4zpU? jhds U(s)

2.2.3. Tangential Component

r_sin(r—6)

r*+s2—2rs cos (r—8)

ritsi—2rs cos (r—0)

Vartri+st—2rs cos (1—6) (2-10)

{x— Yl +rl+s—2rs cos(r—6) }

Integrating (2-2) over «, from z to oo, and using the pressure equation, the boundary condition and

the properties of the Dirac delta function,

o= — Fir,6) . 1 j”ﬁ F(s, 8) zr
OeerU(r) ' dzp Jw s U(s) (z*+r2+s52—2rs cos (r—8)132
_ 1 '{b_d_s_ F(s,8) r—scos G—6) | 1— x 1 (2-11)
dzp Jh s UG)  ri+st—2rs cos (r—8) | Vzifritsi—ors cos (1—6)
——r-r—jbdsi [ F(s,8) } r—s coS (r—6) {1_ x i
dzp Jw o Bs | sU(s) ri+s*—2rs cos (r—@) Vi ri4s2—2rs cos (r—8) -

2.3. Lift force
A stator blade of aspect ratic > 4 can be repre-

sented by a lifting line with the distribution of
circulation along the line passing through the quarter
chord from the leading edge, The lift force density
is, by the Kutta-Joukowsky theorem,

F(5,8)=—pU() T (5,8) (2-12)
This lift force can be expressed in terms of the local
lift coefficient, i.e.,

F(S,&):_%FCLYZ(S)CL (2-13)

Here we are concerned with the lift arising from
the non-uniformity of the hull wake, Prandtle-type
strip theory expresses C. as a function of the
nominal angle of attack and the induced angle of
attack[13], or,

Cr=2z(a,—a,) (2-14)
where
a,,,:l"U".—', and a.—‘:—z’%
Equating (2-12) and (2-13), and using (2-14),
we obtain
I'(s,0)=xc(s) (wu(s, 0)—uvi(s, 6)} (2-15)
F(s,0)=—zpc(s)U(s) (w.(s, 8)—vi(s, )}  (2-16)

And I'(s,6)=0
F(s,6)=0 at hub and tip.

3. Induced Velocities due to Thickness

3.1. Formulation of the problem
The linearizZed Euler equations in cylinderical

coodinates without external forces are,

ol —Uy 2% _dU 1 0P _
axial; —U(r) 3z w+p Py =0

ar -1

1o

tangential; —U(r)g—;]+ — 3y
3 o7

=0 3-2)

radial; -~U(;-)g_:+_.})w _gf_:

3-3
The distribution of thickness for thin blades can
be represented by distributions of scurces and sinks
along the center plane of the blade. If there exist
sources in a flow field the continuity equation is
expressed as,
ou | w 0w + L 0v _ mlzo,5)
ox r or r or r

§(x—mxy) 6(r—s) 8(r—86) (3-4)

where m(xo,s) is source strength at given xz; and s.

According to the same procedure given at part 2.1,

we can obtain pressure equation.

C b c/2
Pz, r,7)= —%—Q j ds j e dxy m(zy, 5)

A
32 (%)

where m(zo,5)=—2U(s) 3T(a~7;o, s)
[

(3-5)

and 7 is half thickness of blade section.
3.2. Induced velocites

By the similiar procedure given at part 2, we

obtain,
_1¢(* st [ or(ap) B /1
w=k [ LU [ deu| 250 )

0xy or \R
~ b g, (7))

——__J_ b c’2 ) 1
Y=t X hds S —c/zdxc m(zo, ’)-a?('R“)

(3-6)
-G 0] e )

or \ R
Ut I r(z0)
27U S AU(S)dsf—c/zdxo Ro

2zU* G-D
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3.3. Thickness distribution
Blade thickness is symmetrically disposed about
the design camber surface. Here we take the thic-
kness as symmetrical ogival section, i.e., composed
of two circular arcs. For these sections, the ogive
can be very closely approximated by a parabola,(14)

as shown in Figure 3, whose equation is

T
T-EM'J"LA L.E. —
MM o—v
Chord

1

Fig. 3 Thickness distribution of blade section

__ A4mg _c < 5
{zg) = 2 (xo 5 )(xo+ 5 > (3-9)
where 7 is the maximum semi-thickness at z=0, and
dr __ 8 -
d.ro 6‘2 ) (3 10)

4. Effects of the Number of Blades

To achieve the total induced velocities for a Z-
bladed stater, we may replace 8 by ¢, and sum over

n from n=1 to n=2Z, i.e.,

Zz
w(z,r,7:2)= Lula, r, 112=1,0-0,) (4-1)

For an equally spaced stator array, we may replace
6 by 8+ (2x n/Z) and sum over zn=0 (key blade)

to n=2Z—1, i.e.,
zZ-1
u(z,r,T;Z)=ZOu(x,r,r;Z=1, 0—0+27 n/Z)

(4-2)
5. Effects of Pitch Angles

If we impose a gecmentric angle of attack along
the blade, the lift coefficient in (2-3) is changed to
Cr=2x(apt+a,—a;) (5-1
where «, is pitch angle, and (2-14) is changed to
I'(s,0)=nc(s) (U(Da,+v,(s,8)—vi(s,0)} (5-2)
F(s,80)=—nrec(s)U(s) (U(s)a,+vu(s, 0) —vi(s, )}
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6. Harmonic Analysis

On the single-screw ship we assume that flow
symmetry exists between the port and starboard side.
Thus in Fourier analysis we consider even functions
for the axial velocity component and odé functions
for tangential velocity component when the key
blade is located at 12 o’clock, otherwise we consider
both even and odd functions.

Let w,v,w=f(7) at given z and r, then

f(r):Ad—%A,. cos(nr—g) (6-1)
where A, is mean value
A, is n-th harmonic amplitude
¢ is phase angle
And
2z
Anzg;rjo f(r)dr (6-2)
T
A= [ THrycos(ar—g)ar (6-3)

7. Numerical Calculation and Results

Numerical calculations are carried ocut for three
nominal axial velocities; six angular positions of the
key blade of equally spaced stator arrays; and five
variations of blade pitch angles as shown in Tables
1,2,3 and 4.

Table 1 Conditions for nominal axial velocity

Case I . Non-uniform nominal axial velocity
| Shear is Included

Case II i Non-uniform nominal axial velocity
% Shear is neglected

Case III | Uniform nominal axial velocity

Table 2 Angular positions of the key blade(radian)

Case 1 0 12 O’clock position
Case 2 2r/42 Clockwise

Case 3 2n/42%2

Case 4 2n/42 X3

Case 5 2n/42x4

Case 6 2n/42%5
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Table 3 Conditio

ns for blade pitch angles
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Table 4 Principal characteristics and field points

Case A
Case B
Case C
Case D
Case E

Zero pitch angle
2,=0.5v./U
ay=1.0v,/U
a,=1.5v./U
ap=2.0v,/U

All length scales are non-dimensionalized by stator

radius R,, and velocity scales are non-dimension-

alized by ship speed
spanwise and chordwi
Axial and tangentia

U. Simpson’s rule is used in
se integrals.
1 induced velocities and their

==w=  MNominal
~—%— Effective(Casme Aligmo,
—C— Effective{Caze Climan
-~
©)
N
> \ \
i
of g.1 .2 Q.2 \i{\}}
~
©y
¢
/{'T‘ o
o s
& T
i AN
’ .)/

Fig. 4 Nominal and
Blade No. II

b ———

20

-

effective tangential velocities,
Case I-1
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Case I : mith sheur

Caze il withaut wwar
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/f‘
/
o /
;‘ 7
o /
o . . ; .
o Vel 0ol 2003 Gue 0.3 0.7 0.8 0.3 1.0
4 e
o
b
-
;

Fig. 6 Harmonic amplitude of axial velocity at
propeller plane, n=1. Case 1-A (a,=0)

x:=-0.5R, axial position of a propeller
k:0.2R, stator hub radius
r . 9 points 0.2R;, 0.3R,, 0.4R,,--,1.0R,

7 . 42 points equally divided

2.7 equally spaced
c:0.1R; constant
70 ¢/8 maximum semi-thickness

harmonic components with the variation of angular

positions and pitch angles are given in Figures 4 to

10
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ig. 5 Axial induced velocities due to lift fores and
thickness, 0.2R., Case 1-A (2,=0)
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Fig. 7 Harmonic amplitude of axial velocity at

propeller plane, n=1. Case I-A (with shear,
apy=0)
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Fig. 8 Harmonic amplitude of tangential velocity at
propeller plane, =1, Case A
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Fig. 10 Harmonic amplitude of tangential velocity
at propeller plane, n=1, Case I-1 (with
shear)

8. Conclusion

From the results we can draw following conclus-
ions,
1) The effects of thickness are very small and they

can be ignored.
2) Shear effects are relatively large at inner radii.

3) For equally spaced stator arrays, angular posi-

tions of the key blade are not important.

KEGEMBEEE H278 F 2 19906 65
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Fig. 9 Harmonic amplitude of axial velocity at
propeller plane, n=1, Case I-1 (shear)

4) Application of blade pitch angles is most effec-
tive in changing flow field to reduce non-uniformity.
5) To get effective velocities at the propeller plane,
it is recommended to include propeller induced

velocities.
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