• Title/Summary/Keyword: Radial Tilt

Search Result 28, Processing Time 0.03 seconds

Tilt analysis of optical pickup actuator using coupled fields analysis (연성해석을 이용한 광픽업 구동기 경사 해석)

  • 신창훈;김철진;이경택;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • In optical disk drive(ODD), pickup actuator, which comprises a key part of an optical disk drive equipment. must be thin. compact, and high sensitive. Low tilt is also an important requirement for the actuator, since optical disks are to high density. This tilt occurs from around the axis parallel to the tangential and radial direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper analyzed tut quantity due to focusing and tracking force through coupled fields analysts with electromagnetic analysis and structural analysis.

  • PDF

Methods for Reducing Rolling effect in Optical Pickup Actuator (광픽업 액츄에이터의 롤링 저감 대책)

  • 정덕영;송병륜;이영빈;신경식;성평용;이주형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.368-372
    • /
    • 2002
  • Since rolling (Radial AC Tilt) motion in Optical Pickup Actuator causes RF signal degradation, many researches have been done to find out how to reduce rolling degree. This paper aims to introduce two methods of reducing rolling degree with their theoretical concepts and experimental results. First method rearranges magnetic circuit and the other one adjusts the proportion of the distances among mass center, actuating center and supporting center.

  • PDF

Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor (로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법)

  • Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.

Evaluation and Analysis of Dynamic Characteristics in Tilt Actuator for High Density Optical Storage Devices (고밀도 광저장 기기용 틸트 액추에이터 동특성 분석 및 평가)

  • 김석중;이용훈;최한국
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.584-595
    • /
    • 2000
  • We design a new actuator for high density optical device in order to control the radial tilting motion. The newly designed actuator makes it possible to control the tilting motion actively, while the coventional actuator compress tilting motion with passive spring. First of all, We present 3-dimensional modeling of actuator and accomplish the modal analysis and magnetic analysis of actuator. Due to these results, a new designed actuator has performance of high sensitivity and high second resonance frequency. Secondly, We present the 3-DOF dynamic modeling of the 4-wire spring type actuator. sensitivity analysis is performed to consider the assembling error, such as the difference of mass center and force center. From these results, the sensitivities of rotation due to the assembly error are revealed and design criteria of rotation is presented. And experimental results of a newly designed actuator are presented and compared with theoretical results. Finally, We propose a dynamic tilt compensation and high acceleration actuator for high density optical storage devices.

  • PDF

Novel mechanism of Compact size Holographic Data Storage (소형 홀로그래픽 고밀도 저장장치에서의 메카니즘 구성)

  • Ha, Sang-Woo;Park, Hong-Soo;Song, In-Sang;Seo, Jeong-Kyo;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1333-1334
    • /
    • 2007
  • Page-oriented angle multiplexing Holographic data storage system is the one of promising techniques for high capacity and data transfer rate, but its size and narrow tilt margin is pointed as a demerit. To overcome this weak point, in this paper, 2-axis deck mechanism for compensation of disc is employed to Compact size Holographic Data Storage (CHDS) which consists of minimized optical components and small 2-axis actuator moving linear & angle direction. Compensation of radial/tangential disc tilt with 2-axis deck mechanism is demonstrated.

  • PDF

Combined Error Performance of Machine Tool spindle (스핀들회전오차 종합적성능평가 기술에 관한 연구)

  • 신현장;이석원;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.333-337
    • /
    • 1996
  • The spindle directly affects parts accuracy during machining, or work piece in machine tools. In this paper a comprehensive study is performed combined mr performance of machine tool spindle. The developed methology has been practically applied to a spindle of machine tools.

  • PDF

WASHINGTON PHOTOMETRY OF THE GLOBULAR CLUSTERS IN THE VIRGO GIANT ELLIPTICAL GALAXY M86

  • Park, Hong-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.3
    • /
    • pp.71-84
    • /
    • 2012
  • We present a photometric study of the globular clusters (GCs) in the Virgo giant elliptical galaxy M86 based on Washington $CT_1$ images. The colors of the GCs in M86 show a bimodal distribution with a blue peak at ($C-T_1$) = 1.30 and a red peak at ($C-T_1$) = 1.72. The spatial distribution of the red GCs is elongated similar to that of the stellar halo, while that of the blue GCs is roughly circular. The radial number density profile of the blue GCs is more extended than that of the red GCs. The radial number density profile of the red GCs is consistent with the surface brightness profile of the M86 stellar halo. The GC system has a negative radial color gradient, which is mainly due to the number ratio of the blue GCs to the red GCs increasing as galactocentric radius increases. The bright blue GCs in the outer region of M86 show a blue tilt: the brighter they are, the redder their mean colors get. These results are discussed in comparison with other Virgo giant elliptical galaxies.

The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error (오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계)

  • Kim, Hyun Woo;Yoon, Yook Hyun;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.

Photometric properties of the globular cluster system of the massive elliptical galaxy M86

  • Park, Hong Soo;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2013
  • We present a photometric study of the globular clusters (GCs) in the giant elliptical galaxy M86 in the Virgo Cluster, using the Washington $CT_1$ images taken at the KPNO 4 m telescope. The color distribution of the GCs in M86 is bimodal. The radial number density profile of the blue GCs decreases more slowly as the galactocentric distance increases than that of the red GCs. The density profile of the red GCs is similar to the surface brightness profile of M86 stellar halo. The blue GCs have a roughly circular spatial distribution, while the red GCs have a spatial distribution somewhat elongated, which is consistent with the distribution of the galaxy stellar light. M86 GCs have the negative radial color gradient because the number ratio of the blue GCs to the red GCs increases as galactocentric radius increases. The mean color of the red GCs is similar to that of the stellar halo. The bright blue GCs in the outer region of M86 reveal a blue tilt that the mean colors of the blue GCs get redder as they get brighter. We discuss these results in comparison with other giant elliptical galaxies in the Virgo Cluster.

  • PDF

Precision Measurement System forBall Screw Pitch Error (볼스크류 전구간 피치오차 측정시스템)

  • 박희재;김인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.279-285
    • /
    • 1993
  • This paper presents a precision automatic measuring system for ball screw Pitch. Ball screw is mounted on a precision indexing table, and the ball screw pitch is measured via magnetic scale, where the indexing and measurement are performed by a PC. For precision indexing of ball screw, direct driven motor is coupled to the designed dead and live centers; the performance of the centers are assessed with a precision master sylinder,such as radial motion,tilt motion, and axial motions. An error compensation model is constructed for the measurement system of ball screw pitch, where the error motions of indexing system as well as the scale measurement system are combined to give the measurement error for the ball screw. The developed system proposes an automated precision measurement system for manufacturers and users of ball screw.

  • PDF