• Title/Summary/Keyword: Radial Distortion

Search Result 95, Processing Time 0.029 seconds

Experimental Study of the Axial Slit Wall and Radial Temperature Gradient Effect on Taylor-Couette Flow (Taylor-Couette 유동에서 축방향 홈과 반경방향 온도구배의 영향에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2008
  • The effect of the radial temperature gradient and the presence of slits in the wall of outer of two cylinders involved in creating a Taylor-Couette flow was investigated by measuring the velocity field inside the gap. The slits were azimuthally located along the inner wall of the outer cylinder and the number of slits used in this study was 18. The radius ratio and aspect ratio of the models were 0.825 and 48, respectively. The heating film wrapped around the inner cylinder was used for generating the constant heat flux and we ensured the constant temperature condition at the outer space of the outer cylinder. The velocity fields were measured by using the PIV(particle image velocimetry) method. The refractive index matching method was applied to remove image distortion. The results were compared with plain wall configuration of Taylor-Couette flow. From the results, the presence of slits in the wall of outer cylinder and temperature gradient increased the flow instability.

An Image Warping Method for Implementation of an Embedded Lens Distortion Correction Algorithm (내장형 렌즈 왜곡 보정 알고리즘 구현을 위한 이미지 워핑 방법)

  • Yu, Won-Pil;Chung, Yun-Koo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.373-380
    • /
    • 2003
  • Most of low cost digital cameras reveal relatively high lens distortion. The purpose of this research is to compensate the degradation of image quality due to the geometrical distortion of a lens system. The proposed method consists of two stages : calculation of a lens distortion coefficient by a simplified version of Tsai´s camera calibration and subsequent image warping of the original distorted image to remove geometrical distortion based on the calculated lens distortion coefficient. In the lens distortion coefficient calculation stage, a practical method for handling scale factor ratio and image center is proposed, after which its feasibility is shown by measuring the performance of distortion correction using a quantitative image quality measure. On the other hand, in order to apply image warping via inverse spatial mapping using the result of the lens distortion coefficient calculation stage, a cubic polynomial derived from an adopted radial distortion lens model must be solved. In this paper, for the purpose of real-time operation, which is essential for embedding into an information device, an approximated solution to the cubic polynomial is proposed in the form of a solution to a quadratic equation. In the experiment, potential for real-time implementation and equivalence in performance as compared with that from cubic polynomial solution are shown.

Design and Implementation of Automatic Detection Method of Corners of Grid Pattern from Distortion Corrected Image (왜곡보정 영상에서의 그리드 패턴 코너의 자동 검출 방법의 설계 및 구현)

  • Cheon, Sweung-Hwan;Jang, Jong-Wook;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2645-2652
    • /
    • 2013
  • For a variety of vision systems such as car omni-directional surveillance systems and robot vision systems, many cameras have been equipped and used. In order to detect corners of grid pattern in AVM(Around View Monitoring) systems, after the non-linear radial distortion image obtained from wide-angle camera is corrected, corners of grids of the distortion corrected image must be detected. Though there are transformations such as Sub-Pixel and Hough transformation as corner detection methods for AVM systems, it is difficult to achieve automatic detection by Sub-Pixel and accuracy by Hough transformation. Therefore, we showed that the automatic detection proposed in this paper, which detects corners accurately from the distortion corrected image could be applied for AVM systems, by designing and implementing it, and evaluating its performance.

Measurement of object depth information using two CCD camera (두 대의 CCD 카메라를 이용한 물체의 깊이정보 측정)

  • 전정희;노경완;김충원
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.693-696
    • /
    • 1998
  • For camera calibration, this paper describes two steps to camera constants and camera parameters. The former is the radial distortion of lens, image center and focal length etc.. The latter is translation, rotation etc.. Camera calibration use tsai's algorithm. In this paper, the solutions are introduced into overdetermined system as matching points that are acquired from two CCD and measured object depth information.

  • PDF

3D Shape Reconstruction from Microscopic Serial Section Images (현미경 섹션 영상으로부터 3차원 형상 복구 기법)

  • 윤일동;이후성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2379-2382
    • /
    • 2003
  • This paper describes the design, implementation and results of a unified non-rigid image registration method for the purposes of 3D shape reconstruction from serial section images. The proposed method uses active contour-based segmentation and compensation of radial distortion. Experimental results show that multiple images can be segmented and reconstructed by active single contour as well as intra- and inter-section registration.

  • PDF

Analysis of Effect on Camera Distortion for Measuring Velocity Using Surface Image Velocimeter (표면영상유속측정법을 이용한 유속 측정 시 카메라 왜곡 영향 분석)

  • Lee, Jun Hyeong;Yoon, Byung Man;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • A surface image velocimeter (SIV) measures the velocity of a particle group by calculating the intensity distribution of the particle group in two consecutive images of the water surface using a cross-correlation method. Therefore, to increase the accuracy of the flow velocity calculated by a SIV, it is important to accurately calculate the displacement of the particle group in the images. In other words, the change in the physical distance of the particle group in the two images to be analyzed must be accurately calculated. In the image of an actual river taken using a camera, camera lens distortion inevitably occurs, which affects the displacement calculation in the image. In this study, we analyzed the effect of camera lens distortion on the displacement calculation using a dense and uniformly spaced grid board. The results showed that the camera lens distortion gradually increased in the radial direction from the center of the image. The displacement calculation error reached 8.10% at the outer edge of the image and was within 5% at the center of the image. In the future, camera lens distortion correction can be applied to improve the accuracy of river surface flow rate measurements.

RBFNNs-based Recognition System of Vehicle License Plate Using Distortion Correction and Local Binarization (왜곡 보정과 지역 이진화를 이용한 RBFNNs 기반 차량 번호판 인식 시스템)

  • Kim, Sun-Hwan;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1531-1540
    • /
    • 2016
  • In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.

Fish-eye camera calibration and artificial landmarks detection for the self-charging of a mobile robot (이동로봇의 자동충전을 위한 어안렌즈 카메라의 보정 및 인공표지의 검출)

  • Kwon, Oh-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.278-285
    • /
    • 2005
  • This paper describes techniques of camera calibration and artificial landmarks detection for the automatic charging of a mobile robot, equipped with a fish-eye camera in the direction of its operation for movement or surveillance purposes. For its identification from the surrounding environments, three landmarks employed with infrared LEDs, were installed at the charging station. When the robot reaches a certain point, a signal is sent to the LEDs for activation, which allows the robot to easily detect the landmarks using its vision camera. To eliminate the effects of the outside light interference during the process, a difference image was generated by comparing the two images taken when the LEDs are on and off respectively. A fish-eye lens was used for the vision camera of the robot but the wide-angle lens resulted in a significant image distortion. The radial lens distortion was corrected after linear perspective projection transformation based on the pin-hole model. In the experiment, the designed system showed sensing accuracy of ${\pm}10$ mm in position and ${\pm}1^{\circ}$ in orientation at the distance of 550 mm.

Using Spheroid Fish-eye Lens Distortion Correction for Image-based Virtual Environment Navigation (실사 가상환경 항해를 위해 Spheroid를 이용한 어안렌즈의 왜곡보정)

  • Shin Ju-Hong;Nam Dong-Hwan;Kwon Gi-Jun;Jung Soon Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.829-832
    • /
    • 2004
  • 실제영상으로 가상환경을 구축해서 사용자가 가상환경을 돌아다님으로써 보다 큰 몰입감과 현실감을 제공하는 영상기반 가상현실 기술은 최근 들어 웹 기반 가상현실시스템을 구축하기 위해서 많이 사용된다. 이 기술은 가상환경 구축에 있어 항해를 쉽게 하기 위한 한 방법으로 넓은 시각 영역(field of view)을 얻을 수 있는 wide-angle 렌즈를 흔히 사용한다. 어안렌즈(fish-eye lens)는 전형적인 넓은 시각 영역을 가진 렌즈로서, 매우 큰 radial distortion 을 가진다. 왜곡을 없앤 영상을 얻기 위해 본 논문에서는 구면기하(spherical geometry) 및 사영기하(projective geometry)를 사용하여 어안영상을 보정하는 non-metric기법을 제안한다. 제안한 이 방법은, 기존의 방법들 보다는 쉽고 빠른 속도로 왜곡을 보정할 수 있으므로 어안영상의 왜곡을 보정하는 하드웨어를 효율적으로 구현할 수 있다. 그리고 spheroid 를 이용해 좀 더 왜곡을 정확히 보정방법과 별도의 서보 모터 없이 pan/title 를 가능케 하는 시점이동에 따른 왜곡 보정 방법을 제시한다.

  • PDF

Face Deformation Technique for Efficient Virtual Aesthetic Surgery Models (효과적인 얼굴 가상성형 모델을 위한 얼굴 변형 기법)

  • Park Hyun;Moon Young Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.63-72
    • /
    • 2005
  • In this paper, we propose a deformation technique based on Radial Basis Function (RBF) and a blending technique combining the deformed facial component with the original face for a Virtual Aesthetic Surgery (VAS) system. The deformation technique needs the smoothness and the accuracy to deform the fluid facial components and also needs the locality not to affect or distort the rest of the facial components besides the deformation region. To satisfy these deformation characteristics, The VAS System computes the degree of deformation of lattice cells using RBF based on a Free-Form Deformation (FFD) model. The deformation error is compensated by the coefficients of mapping function, which is recursively solved by the Singular Value Decomposition (SVD) technique using SSE (Sum of Squared Error) between the deformed control points and target control points on base curves. The deformed facial component is blended with an original face using a blending ratio that is computed by the Euclidean distance transform. An experimental result shows that the proposed deformation and blending techniques are very efficient in terms of accuracy and distortion.