DOI QR코드

DOI QR Code

Analysis of Effect on Camera Distortion for Measuring Velocity Using Surface Image Velocimeter

표면영상유속측정법을 이용한 유속 측정 시 카메라 왜곡 영향 분석

  • 이준형 (명지대학교 토목환경공학과) ;
  • 윤병만 (명지대학교 토목환경공학과) ;
  • 김서준 (주식회사 하이드로셈)
  • Received : 2020.12.17
  • Accepted : 2020.12.22
  • Published : 2021.03.31

Abstract

A surface image velocimeter (SIV) measures the velocity of a particle group by calculating the intensity distribution of the particle group in two consecutive images of the water surface using a cross-correlation method. Therefore, to increase the accuracy of the flow velocity calculated by a SIV, it is important to accurately calculate the displacement of the particle group in the images. In other words, the change in the physical distance of the particle group in the two images to be analyzed must be accurately calculated. In the image of an actual river taken using a camera, camera lens distortion inevitably occurs, which affects the displacement calculation in the image. In this study, we analyzed the effect of camera lens distortion on the displacement calculation using a dense and uniformly spaced grid board. The results showed that the camera lens distortion gradually increased in the radial direction from the center of the image. The displacement calculation error reached 8.10% at the outer edge of the image and was within 5% at the center of the image. In the future, camera lens distortion correction can be applied to improve the accuracy of river surface flow rate measurements.

표면영상유속측정법은 일반적으로 상호상관법을 이용하여 수표면을 촬영한 연속된 두 영상에서 입자군의 명암값 분포를 계산하여 입자군의 변위를 계산하고 이를 두 영상 사이의 시간 간격으로 나누어 입자군의 이동 속도를 산정하는 방법이다. 따라서 표면영상유속측정법으로 산정한 유속의 정확도를 높이기 위해서는 영상 내 두 입자군의 변위를 정확하게 계산하는 것이 무엇보다 중요하다. 즉, 분석하고자 하는 영상에서 입자군이 이동한 물리거리를 정확하게 계산할 수 있어야 한다. 하지만 카메라를 이용하여 실제 하천을 촬영한 영상은 카메라 렌즈에 의한 왜곡이 필연적으로 발생하게 되고 이는 영상 내의 변위 산정 시에도 영향을 미친다. 이에 본 연구에서는 간격이 일정한 격자보드를 이용해, 카메라 렌즈 왜곡이 변위 산정 결과에 미치는 영향을 분석하였다. 연구 결과 카메라 렌즈 왜곡은 영상 중심에서 방사방향으로 점점 크게 나타났으며 변위 산정 오차는 영상 외곽에서 최대 8.10%, 영상 중심 부근에서 5% 이내로 나타났다. 따라서 표면영상유속측정법을 이용하여 하천의 유속 측정 시 카메라 렌즈 왜곡 보정을 실시하여 표면유속 측정 결과의 정확도를 개선하면 하천의 표면유속을 보다 정확하게 측정할 수 있을 것으로 기대된다.

Keywords

References

  1. Aya, S., Fujita, I., and Yagyu, M. 1995. Field-observation of flood in a river by video image analysis. Annual Journal of hydraulic Engineering 39(4): 447-452. (in Japanese) https://doi.org/10.2208/prohe.39.447
  2. Dramais, G., Coz, J.L., Camenen, B., and Hauet, A. 2011. Advantages of a mobile LSPIV method for measuring flood discharges and improving stage discharge curves. Journal of Hydro-environment Research 5(4): 301-312. https://doi.org/10.1016/j.jher.2010.12.005
  3. Fujita, I. and Komura, S. 1994. Application of video image analysis for measurements of river-surface flows. Proceedings of Hydraulic Engineering 38: 733-738. https://doi.org/10.2208/prohe.38.733
  4. Fujita, I. and Kunita, Y. 2011. Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera. Journal of Hydro-environment Research 5(4): 323-331. https://doi.org/10.1016/j.jher.2011.05.003
  5. Fujita, I., Aya, S., and Deguchi, T. 1997. Surface velocity measurement of river flow using video images of an oblique angle. In, Proceedings of the 27th IAHR Congress, Theme B, San Francisco.
  6. Fujita, I., Muste, M., and Kruger, A. 1998. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of hydraulic Research 36(3): 397-414. https://doi.org/10.1080/00221689809498626
  7. Hauet, A., Kruger, A., Krajewski, W.F., Bradley, A., Muste, M., and Creutin, J.D. 2008. Experimental system for real-time discharge estimation using an image-based method. Journal of Hydrological Engineering 13(2): 105-110. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(105)
  8. Kantoush, S.A., Schleiss, A.J., Sumi, T., and Murasaki, M. 2011. LSPIV implementation for environmental flow in various laboratory and field cases. Journal of Hydro-environment Research 5(4): 263-276. https://doi.org/10.1016/j.jher.2011.07.002
  9. Kim, S.J., Yu, K.K., and Yoon, B.M. 2011. Real-time discharge measurement of the river using fixed-type surface image velocimetry. Journal of Korea Water Resources Association 44(5): 377-388. (in Korean) https://doi.org/10.3741/JKWRA.2011.44.5.377
  10. Kim, Y. 2006. Uncertainty analysis for non-intrusive measurement of river discharge using image velocimetry. The University of Iowa.
  11. Lee, G.W., Son, H.W., and Kim, D.I. 2016. Drone Remote Sensing Photogrammetry. Seoul: Korea Gumibook. (in Korean)
  12. Meselhe, E.A., Peeva, T., and Muste, M. 2004. Large scale particle image velocimetry for low velocity and shallow water flows. Journal of Hydraulic Engineering 130(9): 937-940. https://doi.org/10.1061/(asce)0733-9429(2004)130:9(937)
  13. Muste, M., Ho, H.-C., and Kim, D. 2011. Considerations on direct stream flow measurements using video imagery: Outlook and research needs. Journal of Hydro-environment Research 5(4): 289-300. https://doi.org/10.1016/j.jher.2010.11.002
  14. Roh, Y.S. 2005. Development of river discharge measurement technique using image analysis. Ph.D. Thesis, Department of Civil and Environmental Engineering, Myongji University. (in Korean)
  15. Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11): 1330-1334. https://doi.org/10.1109/34.888718
  16. Visualization Society of Japan. 2002. PIV handbook. Morikita.