• Title/Summary/Keyword: Radar Target Recognition

Search Result 63, Processing Time 0.025 seconds

Radar target recognition using Gaussian mixture model over wide-angular region (Gaussian Mixture Model을 이용한 넓은 관측각에서의 효율적인 레이더 표적인식)

  • 서동규;김경태;김효태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.195-198
    • /
    • 2002
  • One-dimensional radar signature, such as range profile, is highly dependent on the aspect angle. Therefore, radar target recognition over wide angular region is a very difficult task. In this paper, we propose the Bayes classifier with Gaussian mixture model for radar target recognition over wide-angular region and compare performances of proposed technique and radar target recognition with subclasses concept in the literature of probability of correct classification ratio.

  • PDF

Wide-Angle Radar Target Classification with Subclass Concept (Subclass 개념을 이용한 넓은 관측각에서의 레이더 표적인식 성능향상에 관한 연구)

  • 서동규;김경태;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.777-782
    • /
    • 2002
  • The range profile is easily obtainable and promising feature vector in the aspect of real-time radar target recognition system. However, the range profile is highly dependent on a aspect angle of a target and this dependence make it difficult the recognition over wide-angular region. In this paper, we propose the classifier with subclass concept in order to solve this dependence problem. Recognition results using six aircraft models measured at compact range facility are presented to show the effectiveness of this proposed classifier over wide-angular region.

A Study on Automatic Target Recognition Using SAR Imagery (SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1063-1069
    • /
    • 2011
  • NCTR(Non-Cooperative Target Recognition) and ATR(Automatic Target Recognition) are methodologies to identify military targets using radar, optical, and infrared images. Among them, a strategy to recognize ground targets using synthetic aperature radar(SAR) images is called SAR ATR. In general, SAR ATR consists of three sequential stages: detection, discrimination and classification. In this paper, a modification of the polar mapping classifier(PMC) to identify inverse SAR(ISAR) images has been made in order to apply it to SAR ATR. In addition, a preprocessing scheme can mitigate the effect from the clutter, and information on the shadow is employed to improve the classification accuracy.

A Vehicle Recognition Method based on Radar and Camera Fusion in an Autonomous Driving Environment

  • Park, Mun-Yong;Lee, Suk-Ki;Shin, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.

ISAR Imaging of a Real Aircraft Using KOMSAR (KOMSAR를 이용한 실제 항공기 ISAR 영상 제작)

  • Kim, Kyung-Tae;Jeong, Ho-Ryung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.717-722
    • /
    • 2007
  • Inverse synthetic aperture radar(ISAR) images represent two-dimensional(2-D) spatial distribution of electromagnetic scattering phenomenology against a target. Hence, they are usually used in the areas of automatic target recognition (ATR) or non-cooperative target recognition(NCTR), identifying a target using radar in a long distance. This paper makes use of Korea Miniature Synthetic Aperture Radar(KOMSAR) to generate ISAR images of a real and maneuvering aircraft. The data obtained from KOMSAR are processed to eliminate phase errors due to motion of a target, with the use of entropy-based ISAR autofocusing technique. Results show that we can successfully obtain ISAR images of a real aircraft, and the success of experiments implies that a significant step toward ATR using radar has been established.

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

Using Hierarchical Performance Modeling to Determine Bottleneck in Pattern Recognition in a Radar System

  • Alsheikhy, Ahmed;Almutiry, Muhannad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.292-302
    • /
    • 2022
  • The radar tomographic imaging is based on the Radar Cross-Section "RCS" of the materials of a shape under examination and investigation. The RCS varies as the conductivity and permittivity of a target, where the target has a different material profile than other background objects in a scene. In this research paper, we use Hierarchical Performance Modeling "HPM" and a framework developed earlier to determine/spot bottleneck(s) for pattern recognition of materials using a combination of the Single Layer Perceptron (SLP) technique and tomographic images in radar systems. HPM provides mathematical equations which create Objective Functions "OFs" to find an average performance metric such as throughput or response time. Herein, response time is used as the performance metric and during the estimation of it, bottlenecks are found with the help of OFs. The obtained results indicate that processing images consumes around 90% of the execution time.

Development of Federated Learning based Motion Recognition Algorithm using Distributed FMCW MIMO Radars (연합 학습 기반 분산 FMCW MIMO Radar를 활용한 모션 인식 알고리즘 개발 및 성능 분석)

  • Kang, Jong-Sung;Lee, Seung-Ho;Lee, Jeonghan;Yang, YunJi;Park, Jaehyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2022
  • In this paper, we implement a distributed FMCW MIMO radar system to obtain Micro Doppler signatures of target motions. In addition, we also develop federated learning based motion recognition algorithm based on the Micro-Doppler radar signature collected by the implemented FMCW MIMO radar system. Through the experiment, we have verified that the proposed federated learning based algorithm can improve the motion recognition accuracy up to 90%.

Study on the Functional Architecture and Improvement Accuracy for Auto Target Classification on the SAR Image by using CNN Ensemble Model based on the Radar System for the Fighter (전투기용 레이다 기반 SAR 영상 자동표적분류 기능 구조 및 CNN 앙상블 모델을 이용한 표적분류 정확도 향상 방안 연구)

  • Lim, Dong Ju;Song, Se Ri;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2020
  • The fighter pilot uses radar mounted on the fighter to obtain high-resolution SAR (Synthetic Aperture Radar) images for a specific area of distance, and then the pilot visually classifies targets within the image. However, the target configuration captured in the SAR image is relatively small in size, and distortion of that type occurs depending on the depression angle, making it difficult for pilot to classify the type of target. Also, being present with various types of clutters, there should be errors in target classification and pilots should be even worse if tasks such as navigation and situational awareness are carried out simultaneously. In this paper, the concept of operation and functional structure of radar system for fighter jets were presented to transfer the SAR image target classification task of fighter pilots to radar system, and the method of target classification with high accuracy was studied using the CNN ensemble model to archive higher classification accuracy than single CNN model.

A Comparative Study of Algorithms for Multi-Aspect Target Classifications (다중 각도 정보를 이용한 표적 구분 알고리즘 비교에 관한 연구)

  • 정호령;김경태;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.579-589
    • /
    • 2004
  • The radar signals are generally very sensitive to relative orientations between radar and target. Thus, the performance of a target recognition system significantly deteriorates as the region of aspect angles becomes broader. To address this difficulty, in this paper, we propose a method based on the multi-aspect information in order to improve the classification capability ever for a wide angular region. First, range profiles are used to extract feature vectors based on the central moments and principal component analysis(PCA). Then, a classifier with the use of multi-aspect information is applied to them, yielding an additional improvement of target recognition capability. There are two different strategies among the classifiers that can fuse the information from multi-aspect radar signals: independent methodology and dependent methodology. In this study, the performances of the two strategies are compared within the frame work of target recognition. The radar cross section(RCS) data of six aircraft models measured at compact range of Pohang University of Science and Technology are used to demonstrate and compare the performances of the two strategies.