• Title/Summary/Keyword: Radar Signals

Search Result 389, Processing Time 0.023 seconds

A Study on Range-Doppler Processing of Time Shifted LFM Signals based on Quasi Orthogonal Property (준 독립적 특성 기반의 시간이동 LFM 신호를 이용한 거리-도플러 처리에 대한 연구)

  • Suh, Kyoung-Whoan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.125-133
    • /
    • 2016
  • As one of solutions to pursue the efficient use of spectrum resource, we proposed the methodology for the co-channel multi-site radar operations with the synchronous GPS clock. The proposed algorithm, based on a quasi orthogonal property, find a candidate set of the time shifted linear frequency modulation(TSLFM) signals with the minimum acceptable level of the correlation among selected TSLFM signals. To check suggested algorithm, numerical analysis for several radars operating in the same channel with a sawtooth waveform has been performed by using range-Doppler processing for the given system parameters, and computational results are presented and examined in terms of range profile and doppler shift for a targets with velocity and distance. Simulated results have a good agreement with assumed target distance and its velocity, within the error of resolution.

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

A Study on Simulation of Asymmetric Doppler Signals in a Weather Radar (기상 레이다에서의 비대칭 도플러 신호 모의구현에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1737-1743
    • /
    • 2008
  • A weather radar extracts the weather information from the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. The characteristics of Doppler weather signal and ground clutter should be analyzed to extract the accurate weather information. However, the conventional symmetric weather Doppler model is somewhat inappropriate in representing various weather situations. Therefore, the improved model is suggested to describe the skewness in the Doppler spectrum model. Using the suggested model, many various weather signals can be simulated efficiently in time and spectral domain according to weather situations, operation environment and system characteristics. This simulation method may be very helpful in verifying the accuracy of the weather information extraction algorithms and developing the new system for further performance improvement.

A Study on Fuzzy Logic based Clustering Method for Radar Data Analysis (레이더 데이터 분석을 위한 Fuzzy Logic 기반 클러스터링 기법에 관한 연구)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Clustering is one of important data mining techniques known as exploratory data analysis and is being applied in various engineering and scientific fields such as pattern recognition, remote sensing, and so on. The method organizes data by abstracting underlying structure either as a grouping of individuals or as a hierarchy of groups. Weather radar observes atmospheric objects by utilizing reflected signals and stores observed data in corresponding coordinate. To analyze the radar data, it is needed to be separately organized precipitation and non-precipitation echo based on similarities. Thus, this paper studies to apply clustering method to radar data. In addition, in order to solve the problem when precipitation echo locates close to non-precipitation echo, fuzzy logic based clustering method which can consider both distance and other properties such as reflectivity and Doppler velocity is suggested in this paper. By using actual cases, the suggested clustering method derives better results than previous method in near-located precipitation and non-precipitation echo case.

Radar Return Signal Simulation Equipment Using MC-DDS (Multi-Channel Direct Digital Synthesis) (다채널 직접 디지털 합성을 이용한 레이더 반사 신호 모의 장치)

  • Roh, Ji-Eun;Yang, Jin-Mo;Yoo, Gyung-Joo;Gu, Young-Suk;Lee, Sang-Hwa;Song, Sung-Chan;Lee, Hee-Young;Choi, Byung-Gwan;Lee, Min-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.966-980
    • /
    • 2011
  • Radar receiving echo signal provides target information - range, velocity and position by signal magnitude and Doppler shift, which are determined by target reflection characteristics and target maneuver. Target angle error is extracted from the magnitude ratio of difference channel to sum channel. In this paper, we introduce a radar Return Signal Simulation Equipment(RSSE) which is implemented for the purpose of performance analysis and evaluation of phased array multi-function radar(MFR). It generates multi-target environment with jamming signals using MC-DDS (Multi-Channel Direct Digital Synthesis), and has scalability by using the efficient hardware configuration. The performance of the developed RSSE has been evaluated under various test environments. Especially, we proved that required target detection performance is achieved by RSP(Radar Signal Processor) interfaced RSSE configuration.

A Study on RCS(Radar Cross Section) Performance with Antenna Transmit Signal on/off in the X-band Incident Wave Environment (X-band 입사파 환경에서 안테나 송신 신호 on/off에 대한 RCS(Radar Cross Section) 성능에 관한 연구)

  • Jung, Euntae;Park, Jinwoo;Yu, Byunggil;Kim, Youngdam;Kim, Kichul;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • Many technologies are being studied to reduce the RCS(Radar Cross Section) of stealth aircraft. Most RCS-reduction technlogies correspond to platforms. It is important to identify factors that RCS performance through simulation analysis of aircraft Mounted equipment. In particular, there are no studies of RCS performance in the radar frequency band when antenna transmit signals are applied. In this paper, the RCS performance variation on the transmit signal on/off of antennas mounted on a stealth aircraft was verified. Antennas were selected for each frequency band and simulated analysis to the RCS performance changes during antenna transmitting signal. Finally, to verify the characteristics of the change in RCS performance, RCS test measurements on the low-profile antenna transmit signal on/off were performed. In addintion, antenna RCS test measurement was performed according to the change of transmit signal power output. As a result, it was confirmed that there is no change in RCS performance when an antenna transmit signal is applied.

A Study on the Estimation of Ocean Surface Wave Information from Marine Radar Signals (선박 레이더 영상신호를 이용한 파랑정보 검출에 관한 연구)

  • Song, Chae-Uk;Kim, Chang-Je;Moon, Seong-Bae
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.499-504
    • /
    • 2003
  • This paper describes the system for evaluating the sea wave informations such as wave direction and wave length in real time, by using image data obtained from the marine X-band radar. We proposed here a method for automatic selection of the partial image data without the user's individual selection at the radar. We also discussed that the wave direction could be obtained by a 2-dimensional discrete Fourier transform algorithm. We carried some evaluation works on the algorithm through computer simulation. The obtained thirteen radar image data under several sea surface conditions were analyzed by the method described and the result was presented.

Deinterleaving of Multiple Radar Pulse Sequences Using Genetic Algorithm (유전자 알고리즘을 이용한 다중 레이더 펄스열 분리)

  • 이상열;윤기천
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.98-105
    • /
    • 2003
  • We propose a new technique of deinterleaving multiple radar pulse sequences by means of genetic algorithm for threat identification in electronic warfare(EW) system. The conventional approaches based on histogram or continuous wavelet transform are so deterministic that they are subject to failing in detection of individual signal characteristics under real EW signal environment that suffers frequent signal missing, noise, and counter-EW signal. The proposed algorithm utilizes the probabilistic optimization procedure of genetic algorithm. This method, a time-of-arrival(TOA) only strategy, constructs an initial chromosome set using the difference of TOA. To evaluate the fitness of each gene, the defined pulse phase is considered. Since it is rare to meet with a single radar at a moment in EW field of combat, multiple solutions are to be derived in the final stage. Therefore it is designed to terminate genetic process at the prematured generation followed by a chromosome grouping. Experimental results for simulated and real radar signals show the improved performance in estimating both the number of radar and the pulse repetition interval.

Identification Algorithm for Up/Down Sliding PRIs of Unidentified RADAR Pulses With Enhanced Electronic Protection (우수한 전자 보호 기능을 가진 미상 레이더 펄스의 상/하 슬라이딩 PRI 식별 알고리즘)

  • Lee, Yongsik;Kim, Jinsoo;Kim, Euigyoo;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.611-619
    • /
    • 2016
  • Success in modern war depends on electronic warfare. Therefore, It is very important to identify the kind of Radar PRI modulations in a lot of Radar electromagnetic waves. In this paper, I propose an algorithm to identify Linear up Sliding PRI, Non-Linear up Sliding PRI and Linear Down Sliding PRI, Non-Linear Down Sliding PRI among many Radar pulses. We applied not only the TDOA(Time Difference Of Arrival) concept of Radar pulse signals incoming to antennas but also a rising and falling curve characteristics of those PRI's. After making a program by such algorithm, we input each 40 data to those PRI's identification programs and as a result, those programs fully processed the data in according to expectations. In the future, those programs can be applied to the ESM, ELINT system.

Distance error of monopulse radar in cross-eye jamming using terrain bounce (지형 바운스를 이용하는 크로스 아이 재밍의 모노펄스 레이다 거리 오차)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.9-13
    • /
    • 2022
  • In this paper, the tracking error of monopulse radar caused by cross-eye jamming using terrain bounce is analyzed. Cross-eye jamming is a method of generating an error in a radar tracking system by simultaneously transmitting two signals with different phases and amplitudes. When the monopulse radar receives the cross-eye jamming signal generated by the terrain bounce, a tracking error occurs in the elevation direction. In the presence of multipath, this signal is a combination of the direct target return and a return seemingly emanating from the target image beneath the terrain surface. Terrain bounce jamming has the advantage of using a single jammer, but the space affecting the jamming is limited by the terrain reflection angle and the degree of scattering of the terrain. This study can be usefully used to protect ships from low-altitude missiles or aircraft in the sea.