• Title/Summary/Keyword: Radar Signals

Search Result 389, Processing Time 0.023 seconds

Design of 77-GHz Automotive Radar Frontend Modules (77 GHz 대역 차량용 레이더의 프론트 엔드 모듈 설계)

  • Park, Sangwook;Kwon, Manseok;Kam, Dong Gun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.487-490
    • /
    • 2014
  • This paper describes a design of an automotive radar frontend module with taking care of the routing of 77-GHz signals on a printed circuit board including wire-bond and waveguide transitions.

The study on high speed A/D conversion implementation employing I/Q compensating algorithm for 3-D radar signal processor (I/Q 보정기능을 갖는 3차원 레이더 신호처리기용 고속 A/D 변환 기법 연구)

  • 조명제;김수중
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.67-76
    • /
    • 1997
  • In radar signal processing, an A/D converter with sufficient dynamic range and high sampling speed is required to detect the weakest target signals in heavy clutter and ECM environments. As the sampling frequency increases, the amount of digital data transfered to the signal processing module is also increased. To overcome these massive data transfer burden, we need an A/D conversion module with an enough data transfer rate. In this paper, we proposed an implementation scheme of a new A/D conversio module that can be used in multi-mode 3-D phased array radar signal processing system, and evaluated the performance. The proposed A/D conversion module is implemented with a standard A/D converter and a 6U-standard VME bus.

  • PDF

Miniaturization of Signal Processor of Airborne Tracking Radar (항공용 추적 레이더의 신호처리기 소형화 설계)

  • Kim, Doh-Hyun;Lee, Young-Sung;Lee, Hyung-Woo;Kim, Soo-Hong;Kim, Young-Chae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.114-117
    • /
    • 2002
  • The airborne tracking radar is located in front of aircraft or missile and measures and tracks a target motion. The signal processor receives target signals from a receiver using A/D converters, and calculates the target motion, and transfers the data to the aircraft or missile control unit. Since the signal processing system is required to be lightweight and small size as well as high performance to calculate and analyze the received signal, we use high speed DSPs and SMD type components having low power consumption. In this paper, we describe the design concept of signal processing system of the airborne tracking radar.

  • PDF

Cross Eye Technique with Single Transceiver (단일 송수신기 구조의 크로스 아이 기법)

  • Jang, Yeonsoo;Lee, Changhoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.598-605
    • /
    • 2016
  • One of the effective methods for angular deception against monopulse radar is a cross eye technique. The typical cross eye technique can cause significant angular errors to monopulse radar by using two transceivers which transmit the signals with opposite phases. However, typical cross eye systems have high complexity of implementation because two transceivers should be installed with enough distance on the platform. In this paper, we propose a new cross eye technique with single transceiver based on the multipath effect. Then, angular deception performance of the proposed technique is analyzed.

Localization of Subsurface Targets Based on Symmetric Sub-array MIMO Radar

  • Liu, Qinghua;He, Yuanxin;Jiang, Chang
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.774-783
    • /
    • 2020
  • For the issue of subsurface target localization by reverse projection, a new approach of target localization with different distances based on symmetric sub-array multiple-input multiple-output (MIMO) radar is proposed in this paper. By utilizing the particularity of structure of the two symmetric sub-arrays, the received signals are jointly reconstructed to eliminate the distance information from the steering vectors. The distance-independent direction of arrival (DOA) estimates are acquired, and the localizations of subsurface targets with different distances are realized by reverse projection. According to the localization mechanism and application characteristics of the proposed algorithm, the grid zooming method based on spatial segmentation is used to optimize the locaiton efficiency. Simulation results demonstrate the effectiveness of the proposed localization method and optimization scheme.

Stealth Aircraft Technology and Future Air Warfare (스텔스 항공기 기술과 미래 항공전장)

  • Sohn, Myong-Hwan;Jung, JongHee;Lee, Joon;Kwag, Hyun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2019
  • Stealth means the reduction of all signature including the reflection/emission of radar, infrared, visible light and audio signals. Stealth aircraft can significantly improve the penetration capability, the combat survivability and the mission effectiveness. This paper presents the basic concept, the key elements and the application examples of stealth aircraft technology. Also it briefly describes the effect of the modern stealth aircraft on the future air warfare.

The Characteristics of Contiguous Pulse Trains of Stepped FM Signals with binary Phase Coding (2진위상 부호화 연속 펄스 계단 FM 신호의 특성)

  • 윤태환;박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.6
    • /
    • pp.79-86
    • /
    • 1978
  • The characteristics of contiguous pulse trains of stopped FM signals with binary phase coding, to be used as radar signals, were investigated. For this purpose, the general expressions for the spectra and the ambiguity functions of this class of signals were first obtained; these expressions were then compute6 and plotted by the use of computer for various coding scheme. The results show that alternate phase coding provides the best time resolution and the corresponding ambiguity functon has a configuration of "be6 of spikes" in the whole time-velocity plane.ity plane.

  • PDF

A Study on the Reaction Time Reduction Method for the ECM System by using the Feed-back Tracking-gate Filtering (귀환 추적게이트 필터링에 의한 ECM 체계 반응시간 단축 방법에 관한 연구)

  • Kim, So-Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.77-86
    • /
    • 2006
  • Usually, a tracking-gate of the tracker is used to track the target radar signal in the active ECM system. In this paper, we propose the feed-back tracking-gate filtering method. The designed method applies a tracking-gate of the tacker to the ECM system's receiver as a rejection or pass filter selected by the receiver's purpose, and the specific target signals can be passed or rejected though this tracking-gate filter. Thus, the number of input signals within the receiver's search band is minimized owing to this filter except the target signals. In conclusion, the EW equipment's reaction time can be reduced and the error value about the target signals can be lower than the previous methods'.

Classification of Respiratory States based on Visual Information using Deep Learning (심층학습을 이용한 영상정보 기반 호흡신호 분류)

  • Song, Joohyun;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.296-302
    • /
    • 2021
  • This paper proposes an approach to the classification of respiratory states of humans based on visual information. An ultra-wide-band radar sensor acquired respiration signals, and the respiratory states were classified based on two-dimensional (2D) images instead of one-dimensional (1D) vectors. The 1D vector-based classification of respiratory states has limitations in cases of various types of normal respiration. The deep neural network model was employed for the classification, and the model learned the 2D images of respiration signals. Conventional classification methods use the value of the quantified respiration values or a variation of them based on regression or deep learning techniques. This paper used 2D images of the respiration signals, and the accuracy of the classification showed a 10% improvement compared to the method based on a 1D vector representation of the respiration signals. In the classification experiment, the respiration states were categorized into three classes, normal-1, normal-2, and abnormal respiration.

Detection Robustness Enhancement and Utility Scheme of Alternating Automotive Dual Beam Laser Radar (합차신호를 이용한 차량용 듀얼 빔 레이저 레이더의 견고한 탐지 능력 향상 방안)

  • Lee Seung-Gi;Yoo Seung-Sun;You Kang-Soo;Kim Sam-Tek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.743-754
    • /
    • 2006
  • In the proposed method, two regular laser working at two different wavelengths perform moving object detection alternatively in time. The laser intensity and the beaming period of each laser is equally maintain as to the single laser radar, hence, externally, dual beam lasers radar works exactly same as the single beam laser radar except that the proposed dual lasers radar needs additional post-processing of received signals in the receiver. To verify the robustness of the proposed method, a set of computer simulation has been performed. The communication channel is assumed to be additive white Gaussian noise, and the perfect synchronization is assumed. All other simulation parameters such as signal power and signalling period are equally maintain in both systems while the signal processing time such as spreading and filtering are expected to be trivial in call cases.