• Title/Summary/Keyword: Radar SLAM

Search Result 5, Processing Time 0.017 seconds

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

Noise Removal of FMCW Scanning Radar for Single Sensor Performance Improvement in Autonomous Driving (자율 주행에서 단일 센서 성능 향상을 위한 FMCW 스캐닝 레이더 노이즈 제거)

  • Wooseong Yang;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • FMCW (Frequency Modulated Continuous Wave) radar system is widely used in autonomous driving and navigation applications due to its high detection capabilities independent of weather conditions and environments. However, radar signals can be easily contaminated by various noises such as speckle noise, receiver saturation, and multipath reflection, which can worsen sensing performance. To handle this problem, we propose a learning-free noise removal technique for radar to enhance detection performance. The proposed method leverages adaptive thresholding to remove speckle noise and receiver saturation, and wavelet transform to detect multipath reflection. After noise removal, the radar image is reconstructed with the geometric structure of the surrounding environments. We verify that our method effectively eliminated noise and can be applied to autonomous driving by improving the accuracy of odometry and place recognition.

Width Estimation of Stationary Objects using Radar Image for Autonomous Driving of Unmanned Ground Vehicles (무인차량 자율주행을 위한 레이다 영상의 정지물체 너비추정 기법)

  • Kim, Seongjoon;Yang, Dongwon;Kim, Sujin;Jung, Younghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.711-720
    • /
    • 2015
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance have been reported. Since several pixels per an object may be generated in a close-range radar application, a width of an object can be estimated automatically by various signal processing techniques. In this paper, we tried to attempt to develop an algorithm to estimate obstacle width using Radar images. The proposed method consists of 5 steps - 1) background clutter reduction, 2) local peak pixel detection, 3) region growing, 4) contour extraction and 5)width calculation. For the performance validation of our method, we performed the test width estimation using a real data of two cars acquired by commercial radar system - I200 manufactured by Navtech. As a result, we verified that the proposed method can estimate the widths of targets.

Range-Doppler Clustering of Radar Data for Detecting Moving Objects (이동물체 탐지를 위한 레이다 데이터의 거리-도플러 클러스터링 기법)

  • Kim, Seongjoon;Yang, Dongwon;Jung, Younghun;Kim, Sujin;Yoon, Joohong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.810-820
    • /
    • 2014
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance are reported. In near field, several hits per an object are generated after signal processing of Radar data. Hence, clustering is an essential technique to estimate their shapes and positions precisely. This paper proposes a method of grouping hits in range-doppler domains into clusters which represent each object, according to the pre-defined rules. The rules are based on the perceptual cues to separate hits by object. The morphological connectedness between hits and the characteristics of SNR distribution of hits are adopted as the perceptual cues for clustering. In various simulations for the performance assessment, the proposed method yielded more effective performance than other techniques.

2D Indoor Map Building Scheme Using Ultrasonic Module (초음파 센서 모듈을 활용한 2D 실내 지도 작성 기법)

  • Ahn, Deock-hyeon;Kim, Nam-moon;Park, Ji-hye;Kim, Young-ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.986-994
    • /
    • 2016
  • In this paper, we proposed ultrasonic radar module and fixed module for the 2D indoor map building and from each of the modules, we can see the possibilities, limitations and considerations. And finally show the result of building actual 2D indoor map from the modules. Recently there are lots of works for the building indoor map by spotlight on the simultaneous localization and mapping (SLAM). And the LiDAR, ultrasonic, camera sensors are usually used for this work. Especially the LiDAR sensor have a higher resolution and wider detection range more than the ultrasonic sensor, but also there are limitation in the size of module, higher cost, much more throughput of processing data, and weaker to use in various indoor environment noises. So from these reasons, in this paper we could verify that proposed modules and schemes have a enough performance to build the 2D indoor map instead of using LiDAR and camera sensor with minimum number of ultrasonic sensors and less throughput of processing data.