Acknowledgement
This study is a part of the research project, "Development of core machinery technologies for autonomous operation and manufacturing (NK242H)", which has been supported by a grant from National Research Council of Science & Technology under the R&D Program of Ministry of Science, ICT and Future Planning
References
- F. Schuster, C. G. Keller, M. Rapp, M. Haueis, and C. Curio, "Landmark based radar SLAM using graph optimization," International Conference on Intelligent Transportation, Rio de Janeiro, Brazil, 2016, DOI: 10.1109/ITSC.2016.7795967.
- J. W. Marck, A. Mohamoud, E. v. Houwen, and R. v. Heijster, "Indoor radar slam a radar application for vision and gps denied environments," IEEE European Radar Conference, Nuremberg, Germany, pp. 471-474, 2013, [Online], https://ieeexplore.ieee.org/document/6689216.
- H. Lee, J. Chun, and K. Jeon, "Experimental Results and Posterior Cramer-Rao Bound Analysis of EKF-Based Radar SLAM With Odometer Bias Compensation," IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 310-324, Feb., 2021, DOI: 10.1109/TAES.2020.3016873.
- N. Mandischer, S. C. Eddine, M. Huesing, and B. Corves, "Radar Slam for Autonomous Indoor Grinding," IEEE National Conference on Radar, Florence, Italy, pp. 1-6, 2020, DOI: 10.1109/RadarConf2043947.2020.9266541.
- Y. S. Park, Y.-S. Shin, and A. Kim, "3D ego-Motion Estimation Using low-Cost mmWave Radars via Radar Belocity Factor for Pose-Graph SLAM," IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7691-7698, Oct., 2021, DOI: 10.1109/LRA.2021.3099365.
- Z. Hong, Y. Petillot, and S. Wang, "RadarSLAM: Radar based Large-Scale SLAM in All Weathers," IEEE International Workshop on Intelligent Robots and Systems (IROS), Las Vegas, USA, pp. 5164-5170, 2020, DOI: 10.1109/IROS45743.2020.9341287.
- J. Callmer, D. Tornqvist, F. Gustaffson, H. Svensson, and P. Carlbom, "Radar SLAM using visual features," EURASIP Journal on Advances in Signal Processing, vol. 71, Sept., 2011, DOI: 10.1186/1687-6180-2011-71.
- M. A. Herman and T. Strohmer, "High-Resolution Radar via Compressed Sensing," IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2275-2284, Jun., 2009, DOI: 10.1109/TSP.2009.2014277.
- Z. Zeng, X. Dang, Y. Li, X. Bu, and X. Liang, "Angular SuperResolution Radar SLAM," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, pp. 5456-5461, 2021, DOI: 10.1109/IROS51168.2021.9636438.
- M. F. Fu, O. C. Au, and W. C. Chan, "Low-band-shift (LBS) motion estimation with symmetric padding in wavelet domain," IEEE International Symposium on Circuits and Systems (ISCAS), Phoenix-Scottsdale, USA, 2002, DOI: 10.1109/ISCAS.2002.1010148.
- H.-H. Ko, K.-W. Cheng, and H.-J. Su, "Range resolution improvement for FMCW radars," European Radar Conference (EURAD), Amsterdam, Netherlands, pp. 352-355, 2008, [Online], https://ieeexplore.ieee.org/abstract/document/4760874.
- R. Rouveure, P. Faure, M. Jaud, M. O. Monod, and L. Moiroux-Arvis, "Distance and angular resolutions improvement for a ground-based radar imager," IEEE International Radar Conference, Lille, France, 2014, DOI: 10.1109/RADAR.2014.7060456.
- F. Sadjadi, "Radar beam sharpening using an optimum FIR filter," Circuits, Systems and Signal Process, vol. 19, pp. 121-129, Mar., 2000, DOI: 10.1007/BF01212466.
- A. Geiss, and J. C. Hardin, "Radar Super Resolution Using a Deep Convolutional Neural Network," Journal of Atmospheric and Oceanic Technology, vol. 37, no. 12, pp. 2197-2207, Dec., 2020, DOI: 10.1175/JTECH-D-20-0074.1.
- S. Lee, J.-Y. Lee, and S.-C. Kim, "Mutual Interference Suppression Using Wavelet Denoising in Automotive FMCW Radar Systems," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 2, pp. 887-897, Feb., 2021, DOI: 10.1109/TITS.2019.2961235.
- S. Dogu, M. N. Akinci, M. Cayoren, and I. Akduman, "Truncated singular value decomposition for through-the-wall microwave imaging application," IET Microwaves, Antennas & Propagation, vol. 14, no. 4, pp. 260-267, Mar., 2020, DOI: 10.1049/iet-map.2019.0677.
- Luhr, Daniel and M. Adams, "Radar Noise Reduction Based on Binary Integration," IEEE Sensors Journal, vol. 15, no. 2, pp. 766-777, Feb., 2015, DOI: 10.1109/JSEN.2014.2352295.
- M. S. Islam and U. Chong, "Noise reduction of continuous wave radar and pulse radar using matched filter and wavelets," EURASIP Journal on Image and Video Processing, vol. 43, pp. 1-9, Aug., 2014, DOI: 10.1186/1687-5281-2014-43.
- Z. Qu, X. Mao, and Z. Deng, "Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network," IEEE Access, vol. 7, pp. 112339-112347, Aug., 2019, DOI: 10.1109/ACCESS.2019.2935247.
- X. Li, Z.-M. Liu, and Z. Huang, "Denoising of Radar Pulse Streams With Autoencoders," IEEE Communications Letters, vol. 24, no. 4, pp. 797-801, Apr., 2020, DOI: 10.1109/LCOMM.2020.2967365.
- M. Du, P. Zhong, X. Cai, and D. Bi, "DNCNet: Deep Radar Signal Denoising and Recognition," IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp. 3549-3562, Aug., 2022, DOI: 10.1109/TAES.2022.3153756.
- M. Alizadeh, M. Chavoshi, A. Samir, A. M. Hegazy, A. Bahri, M. Basha, and S. Safavi-Naeini, "Experimental Deep Learning Assisted Super-Resolution Radar Imaging," European Radar Conference (EURAD), London, United Kingdom, 2022, DOI: 10.23919/EuRAD50154.2022.9784470.
- M. Weiss, "Analysis of Some Modified Cell-Averaging CFAR Processors in Multiple-Target Situations," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-18, no. 1, pp. 102-114, Jan., 1982, DOI: 10.1109/TAES.1982.309210.
- M. Adams, E. Jose, and B.-N. Vo, "Sources of Uncertainty in Radar," Robotic navigation and mapping with radar, Artech, 2012, ch.2, sec. 2.7, pp. 58-68, [Online], https://ieeexplore.ieee.org/abstract/document/9100374.
- P. Bao, L. Zhang, and X. Wu, "Canny edge detection enhancement by scale multiplication," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1485-1490, Sept., 2005, DOI: 10.1109/TPAMI.2005.173.
- J. Illingworth and J. Kittler, "A survey of the Hough transform," Computer vision, graphics, and image processing, vol. 44, no.1, pp. 87-116, Oct., 1988, DOI: 10.1016/S0734-189X(88)80033-1.
- D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, "The Oxford Radar Robotcar Dataset: A Radar Extension to the Oxford Robotcar Dataset," IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 6433-6438, 2020, DOI: 10.1109/ICRA40945.2020.9196884.
- G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, "Mulran: Multimodal Range Dataset for Urban Place Recognition," IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 6246-6253, 2020, DOI: 10.1109/ICRA40945.2020.9197298.
- Y. S. Park, Y.-S. Shin, and A. Kim, "PhaRao: Direct Radar Odometry using Phase Correlation," IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 2617-2623, 2020, DOI: 10.1109/ICRA40945.2020.9197231.
- MichaelGrupp/evo, [Online], https://github.com/MichaelGrupp/evo, Accessed: Apr. 24, 2023.
- Z. Zhang and D. Scaramuzza, "A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry," IEEE International Workshop on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 7244-7251, 2018, DOI: 10.1109/IROS.2018.8593941.
- G. Kim and A. Kim, "Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map," IEEE International Workshop on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 4802-4809, 2018, DOI: 10.1109/IROS.2018.8593953.
- S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford, "Visual Place Recognition: A Survey," IEEE Transactions on Robotics, vol. 32, no. 1, pp. 1-19, Feb., 2016, DOI: 10.1109/TRO.2015.2496823.
- S. H. Cen and P. Newman, "Precise Ego-Motion Estimation with Millimeter-Wave Radar Under Diverse and Challenging Conditions," IEEE International Conference on Robotics and Automation (ICRA), pp. 6045-6052, Brisbane, Australia, 2018, DOI: 10.1109/ICRA.2018.8460687.
- S. H. Cen and P. Newman, "Radar-only ego-motion estimation in difficult settings via graph matching," IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 298-304, 2019, DOI: 10.1109/ICRA.2019.8793990.