DOI QR코드

DOI QR Code

Noise Removal of FMCW Scanning Radar for Single Sensor Performance Improvement in Autonomous Driving

자율 주행에서 단일 센서 성능 향상을 위한 FMCW 스캐닝 레이더 노이즈 제거

  • Wooseong Yang (Mechanical Engineering, Seoul National University) ;
  • Myung-Hwan Jeon (Institute of Advanced Machines and Design, Seoul National University) ;
  • Ayoung Kim (Mechanical Engineering, Seoul National University)
  • Received : 2023.05.25
  • Accepted : 2023.07.05
  • Published : 2023.08.31

Abstract

FMCW (Frequency Modulated Continuous Wave) radar system is widely used in autonomous driving and navigation applications due to its high detection capabilities independent of weather conditions and environments. However, radar signals can be easily contaminated by various noises such as speckle noise, receiver saturation, and multipath reflection, which can worsen sensing performance. To handle this problem, we propose a learning-free noise removal technique for radar to enhance detection performance. The proposed method leverages adaptive thresholding to remove speckle noise and receiver saturation, and wavelet transform to detect multipath reflection. After noise removal, the radar image is reconstructed with the geometric structure of the surrounding environments. We verify that our method effectively eliminated noise and can be applied to autonomous driving by improving the accuracy of odometry and place recognition.

Keywords

Acknowledgement

This study is a part of the research project, "Development of core machinery technologies for autonomous operation and manufacturing (NK242H)", which has been supported by a grant from National Research Council of Science & Technology under the R&D Program of Ministry of Science, ICT and Future Planning

References

  1. F. Schuster, C. G. Keller, M. Rapp, M. Haueis, and C. Curio, "Landmark based radar SLAM using graph optimization," International Conference on Intelligent Transportation, Rio de Janeiro, Brazil, 2016, DOI: 10.1109/ITSC.2016.7795967. 
  2. J. W. Marck, A. Mohamoud, E. v. Houwen, and R. v. Heijster, "Indoor radar slam a radar application for vision and gps denied environments," IEEE European Radar Conference, Nuremberg, Germany, pp. 471-474, 2013, [Online], https://ieeexplore.ieee.org/document/6689216. 
  3. H. Lee, J. Chun, and K. Jeon, "Experimental Results and Posterior Cramer-Rao Bound Analysis of EKF-Based Radar SLAM With Odometer Bias Compensation," IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 310-324, Feb., 2021, DOI: 10.1109/TAES.2020.3016873. 
  4. N. Mandischer, S. C. Eddine, M. Huesing, and B. Corves, "Radar Slam for Autonomous Indoor Grinding," IEEE National Conference on Radar, Florence, Italy, pp. 1-6, 2020, DOI: 10.1109/RadarConf2043947.2020.9266541. 
  5. Y. S. Park, Y.-S. Shin, and A. Kim, "3D ego-Motion Estimation Using low-Cost mmWave Radars via Radar Belocity Factor for Pose-Graph SLAM," IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7691-7698, Oct., 2021, DOI: 10.1109/LRA.2021.3099365. 
  6. Z. Hong, Y. Petillot, and S. Wang, "RadarSLAM: Radar based Large-Scale SLAM in All Weathers," IEEE International Workshop on Intelligent Robots and Systems (IROS), Las Vegas, USA, pp. 5164-5170, 2020, DOI: 10.1109/IROS45743.2020.9341287. 
  7. J. Callmer, D. Tornqvist, F. Gustaffson, H. Svensson, and P. Carlbom, "Radar SLAM using visual features," EURASIP Journal on Advances in Signal Processing, vol. 71, Sept., 2011, DOI: 10.1186/1687-6180-2011-71. 
  8. M. A. Herman and T. Strohmer, "High-Resolution Radar via Compressed Sensing," IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2275-2284, Jun., 2009, DOI: 10.1109/TSP.2009.2014277. 
  9. Z. Zeng, X. Dang, Y. Li, X. Bu, and X. Liang, "Angular SuperResolution Radar SLAM," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, pp. 5456-5461, 2021, DOI: 10.1109/IROS51168.2021.9636438. 
  10. M. F. Fu, O. C. Au, and W. C. Chan, "Low-band-shift (LBS) motion estimation with symmetric padding in wavelet domain," IEEE International Symposium on Circuits and Systems (ISCAS), Phoenix-Scottsdale, USA, 2002, DOI: 10.1109/ISCAS.2002.1010148. 
  11. H.-H. Ko, K.-W. Cheng, and H.-J. Su, "Range resolution improvement for FMCW radars," European Radar Conference (EURAD), Amsterdam, Netherlands, pp. 352-355, 2008, [Online], https://ieeexplore.ieee.org/abstract/document/4760874. 
  12. R. Rouveure, P. Faure, M. Jaud, M. O. Monod, and L. Moiroux-Arvis, "Distance and angular resolutions improvement for a ground-based radar imager," IEEE International Radar Conference, Lille, France, 2014, DOI: 10.1109/RADAR.2014.7060456. 
  13. F. Sadjadi, "Radar beam sharpening using an optimum FIR filter," Circuits, Systems and Signal Process, vol. 19, pp. 121-129, Mar., 2000, DOI: 10.1007/BF01212466. 
  14. A. Geiss, and J. C. Hardin, "Radar Super Resolution Using a Deep Convolutional Neural Network," Journal of Atmospheric and Oceanic Technology, vol. 37, no. 12, pp. 2197-2207, Dec., 2020, DOI: 10.1175/JTECH-D-20-0074.1. 
  15. S. Lee, J.-Y. Lee, and S.-C. Kim, "Mutual Interference Suppression Using Wavelet Denoising in Automotive FMCW Radar Systems," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 2, pp. 887-897, Feb., 2021, DOI: 10.1109/TITS.2019.2961235. 
  16. S. Dogu, M. N. Akinci, M. Cayoren, and I. Akduman, "Truncated singular value decomposition for through-the-wall microwave imaging application," IET Microwaves, Antennas & Propagation, vol. 14, no. 4, pp. 260-267, Mar., 2020, DOI: 10.1049/iet-map.2019.0677. 
  17. Luhr, Daniel and M. Adams, "Radar Noise Reduction Based on Binary Integration," IEEE Sensors Journal, vol. 15, no. 2, pp. 766-777, Feb., 2015, DOI: 10.1109/JSEN.2014.2352295. 
  18. M. S. Islam and U. Chong, "Noise reduction of continuous wave radar and pulse radar using matched filter and wavelets," EURASIP Journal on Image and Video Processing, vol. 43, pp. 1-9, Aug., 2014, DOI: 10.1186/1687-5281-2014-43. 
  19. Z. Qu, X. Mao, and Z. Deng, "Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network," IEEE Access, vol. 7, pp. 112339-112347, Aug., 2019, DOI: 10.1109/ACCESS.2019.2935247. 
  20. X. Li, Z.-M. Liu, and Z. Huang, "Denoising of Radar Pulse Streams With Autoencoders," IEEE Communications Letters, vol. 24, no. 4, pp. 797-801, Apr., 2020, DOI: 10.1109/LCOMM.2020.2967365. 
  21. M. Du, P. Zhong, X. Cai, and D. Bi, "DNCNet: Deep Radar Signal Denoising and Recognition," IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp. 3549-3562, Aug., 2022, DOI: 10.1109/TAES.2022.3153756. 
  22. M. Alizadeh, M. Chavoshi, A. Samir, A. M. Hegazy, A. Bahri, M. Basha, and S. Safavi-Naeini, "Experimental Deep Learning Assisted Super-Resolution Radar Imaging," European Radar Conference (EURAD), London, United Kingdom, 2022, DOI: 10.23919/EuRAD50154.2022.9784470. 
  23. M. Weiss, "Analysis of Some Modified Cell-Averaging CFAR Processors in Multiple-Target Situations," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-18, no. 1, pp. 102-114, Jan., 1982, DOI: 10.1109/TAES.1982.309210. 
  24. M. Adams, E. Jose, and B.-N. Vo, "Sources of Uncertainty in Radar," Robotic navigation and mapping with radar, Artech, 2012, ch.2, sec. 2.7, pp. 58-68, [Online], https://ieeexplore.ieee.org/abstract/document/9100374. 
  25. P. Bao, L. Zhang, and X. Wu, "Canny edge detection enhancement by scale multiplication," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1485-1490, Sept., 2005, DOI: 10.1109/TPAMI.2005.173. 
  26. J. Illingworth and J. Kittler, "A survey of the Hough transform," Computer vision, graphics, and image processing, vol. 44, no.1, pp. 87-116, Oct., 1988, DOI: 10.1016/S0734-189X(88)80033-1. 
  27. D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, "The Oxford Radar Robotcar Dataset: A Radar Extension to the Oxford Robotcar Dataset," IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 6433-6438, 2020, DOI: 10.1109/ICRA40945.2020.9196884. 
  28. G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, "Mulran: Multimodal Range Dataset for Urban Place Recognition," IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 6246-6253, 2020, DOI: 10.1109/ICRA40945.2020.9197298. 
  29. Y. S. Park, Y.-S. Shin, and A. Kim, "PhaRao: Direct Radar Odometry using Phase Correlation," IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 2617-2623, 2020, DOI: 10.1109/ICRA40945.2020.9197231. 
  30. MichaelGrupp/evo, [Online], https://github.com/MichaelGrupp/evo, Accessed: Apr. 24, 2023. 
  31. Z. Zhang and D. Scaramuzza, "A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry," IEEE International Workshop on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 7244-7251, 2018, DOI: 10.1109/IROS.2018.8593941. 
  32. G. Kim and A. Kim, "Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map," IEEE International Workshop on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 4802-4809, 2018, DOI: 10.1109/IROS.2018.8593953. 
  33. S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford, "Visual Place Recognition: A Survey," IEEE Transactions on Robotics, vol. 32, no. 1, pp. 1-19, Feb., 2016, DOI: 10.1109/TRO.2015.2496823. 
  34. S. H. Cen and P. Newman, "Precise Ego-Motion Estimation with Millimeter-Wave Radar Under Diverse and Challenging Conditions," IEEE International Conference on Robotics and Automation (ICRA), pp. 6045-6052, Brisbane, Australia, 2018, DOI: 10.1109/ICRA.2018.8460687. 
  35. S. H. Cen and P. Newman, "Radar-only ego-motion estimation in difficult settings via graph matching," IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 298-304, 2019, DOI: 10.1109/ICRA.2019.8793990.