• Title/Summary/Keyword: Radar Interference Model

Search Result 15, Processing Time 0.022 seconds

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine (Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.665-670
    • /
    • 2014
  • A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.

Application of KOMPSAT-5 SAR Interferometry by using SNAP Software (SNAP 소프트웨어를 이용한 KOMPSAT-5 SAR 간섭기법 구현)

  • Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2017
  • SeNtinel's Application Platform (SNAP) is an open source software developed by the European Space Agency and consists of several toolboxes that process data from Sentinel satellite series, including SAR (Synthetic Aperture Radar) and optical satellites. Among them, S1TBX (Sentinel-1 ToolBoX)is mainly used to process Sentinel-1A/BSAR images and interferometric techniques. It provides flowchart processing method such as Graph Builder, and has convenient functions including automatic downloading of DEM (Digital Elevation Model) and image mosaicking. Therefore, if computer memory is sufficient, InSAR (Interferometric SAR) and DInSAR (Differential InSAR) perform smoothly and are widely used recently in the world through rapid upgrades. S1TBX also includes existing SAR data processing functions, and since version 5, the processing capability of KOMPSAT-5 has been added. This paper shows an example of processing the interference technique of KOMPSAT-5 SAR image using S1TBX of SNAP. In the open mine of Tavan Tolgoi in Mongolia, the difference between DEM obtained in KOMPSAT-5 in 2015 and SRTM 1sec DEM obtained in 2000 was analyzed. It was found that the maximum depth of 130 meters was excavated and the height of the accumulated ore is over 70 meters during 15 years. Tidal and topographic InSAR signals were observed in the glacier area near Jangbogo Antarctic Research Station, but SNAP was not able to treat it due to orbit error and DEM error. In addition, several DInSAR images were made in the Iraqi desert region, but many lines appearing in systematic errors were found on coherence images. Stacking for StaMPS application was not possible due to orbit error or program bug. It is expected that SNAP can resolve the problem owing to a surge in users and a very fast upgrade of the software.

Study on Thermal Vacuum Test Result of DCAMP by the Analysis of Derating & Gain Control (디지털중계기의 부하경감 및 이득조정기능 분석을 통한 열진공시험결과 성능분석)

  • Jin, Byoung-Il;Ko, Hyun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, the usage of the satellite is increased more and more in the areas that are communication, weather, marine, optical, radar etc. The functions of the Satellite are evolving from passive transponder to active transponder by the developing of a technology. Advanced countries in satellites install the DCAMP for increase of bandwidth efficiency, improvement of QoS by interference rejection. DCAMP includes many digital components in order to implement functions. Thus, these kinds of active transponders consume much more power compared to passive transponder and then increase the heat. In this paper, we discuss the TVAC test result of DCAMP in EQM(Engineering Qualification Model) level. The paper shows the test results of digital gain control in order to verify DCAMP status under the TVAC test. In addition, the temperature and heat condition of main components from viewpoint of derating will be treated through the official environment test for qualification.

Optimal Scheduling of Detection and Tracking Parameters in Phased Array Radars (위상배열 레이다 검출 및 추적 매개변수의 최적 스케쥴링)

  • Jung, Young-Hun;Kim, Hyun-Soo;Hong, Sun-Mog
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.50-61
    • /
    • 1999
  • \In this paper, we consider the optimal scheduling of detection and tracking parameters in phased array radars to minimize the radar energy required for track maintenance in a cluttered environment. We develop a mathematical model of target detection induced by a search process in phased array radars. In the mathematical development, we take into account the effect of unwanted measurements that may have originated from clutter or false alarms in the detection process. We use and analytic approximation of the modified Riccati equation of the probabilistic data association (PDA) filter to take into account the effect of clutter interference in tracking. Based on the search process and the tracking models, we formulate the optimal scheduling problem into a nonlinear optimal control problem. We solve a constrained nonlinear optimization problem to obtain the solution of the optimal control problem.

  • PDF