• Title/Summary/Keyword: Radar Experiment

Search Result 152, Processing Time 0.028 seconds

Verification of precipitation enhancement by weather modification experiments using radar data (레이더 자료를 이용한 기상조절 실험에 의한 강수 증가 검증 연구)

  • Ro, Yonghun;Cha, Joo-Wan;Chae, Sanghee
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.999-1013
    • /
    • 2020
  • Weather modification research has been actively performed worldwide, but a technology that can more quantitatively prove the research effects are needed. In this study, the seeding effect, the efficiency of precipitation enhancement in weather modification experiment, was verified using the radar data. Also, the effects of seeding material on hydrometeor change was analyzed. For this, radar data, weather conditions, and numerical simulation data for diffusion were applied. First, a method to analyze the seeding effect in three steps was proposed: before seeding, during seeding, and after seeding. The proposed method was applied to three cases of weather modification experiments conducted in Gangwon-do and the West Sea regions. As a result, when there is no natural precipitation, the radar reflectivity detected in the area where precipitation change is expected was determined as the seeding effect. When natural precipitation occurs, the seeding effect was determined by excluding the effect of natural precipitation from the maximum reflectivity detected. For the application results, it was found that the precipitation intensity increased by 0.1 mm/h through the seeding effect. In addition, it was confirmed that ice crystals, supercooled water droplets, and mixed-phase precipitation were distributed in the seeding cloud. The results of these weather modification research can be used to secure water resources as well as for future study of cloud physics.

Analysis of Results and Techniques about Precipitation Enhancement by Aircraft Seeding in Korea (항공기를 이용한 인공증우(설) 기술과 결과분석)

  • Cha, Joo Wan;Jung, Wooseon;Chae, Sanghee;Ko, A-Reum;Ro, Yonghun;Chang, Ki-Ho;Seo, Seongkyu;Ha, Jong-Chul;Park, Dongoh;Hwang, Hyun Jun;Kim, Min Hoo;Kim, Kyung Eak;Ku, Jung Mo
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.481-499
    • /
    • 2019
  • National Institute of Meteorological Sciences has conducted a total 54 cloud seeding experiments with a silver iodide and calcium chloride using aircrafts from 2008 to 2018. The goal of the experiments is to improve the techniques of precipitation enhancement in Korea. The cloud seeding experiments using the silver iodide and calcium chloride were 36 and 18 times, respectively. During the cloud seeding experiments of the silver iodide and calcium chloride, the average values of total cloud amount for two kinds of seeding materials were 9.6 for and 8.1, respectively. The cloud type with the highest occurrence was Nimbostratus (Ns)-Stratus (St) (58%) in the silver iodide cloud seeding experiment. It was Altostratus (As)-Stratocumulus (Sc) (44%) in the calcium chloride cloud seeding experiment. Compared to probability of obtaining cloud seeding effect of the experiments using a leased aircraft, the probability using an atmospheric research aircraft increased from 43% to 63% in the silver iodide cloud seeding experiment and from 29% to 75% in the calcium chloride cloud seeding experiment. However, the increasing tendency was only shown during the one year experiment (2018). To get the meaningful statistical tendency of the cloud seeding effects, it is needed to implement many experiments in several years. Further we have to more clearly understand the characteristics of clouds developing in Korea and implement the cloud seeding experiments under a variety of weather conditions in order to develop the optimized precipitation enhancement technology in Korea.

A Study on the Synthetic Aperture Radar Processor using AOD/CCD (AOD/CCD를 이용한 합성개구면 레이다 처리기에 관한 연구)

  • 박기환;이영훈;이영국;은재정;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1957-1964
    • /
    • 1994
  • In this thesis, a Synthetic Aperture Rarar Processor that is possible real-time handling is implemented using CW(Continuose Wave) laser as a light source, CCD(charge Coupled Device) as a time integrator, and AOD(Acousto-Optic Device) as the space integrator. One of the advantages of the proposed system is that it does not require driving circuits of the light source. To implement the system, the linear frequency modulation(chirp) technique has been used for radar signal. The received data for the unit target was processed using 7.80 board and accompanying electronic circuits. In order to reduce the smear effect of the focused chirp signal which occurs Bragg diffrection angle of the AOD has been utilized to make sharp pulses of the laser source, and the pulse made synchronized with the chirp signal. Experiment and analysis results of the data and images detected from CCD of the proposed SAR system demonstrated that detection effect is degrated as the unit target distance increases, and the resolving power is improved as the bandwidth of the chirp signal increases. Also, as the pulse width of the light source decreases, the smear effect has been reduced. The experimental results assured that the proposed system in this papre can be used as a real time SAR processor.

  • PDF

A SCATTERING MECHANISM IN OYSTER FARM BY POLARIMETRIC AND JERS-l DATA

  • Lee Seung-Kuk;Won Joong Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.538-541
    • /
    • 2005
  • Tidal flats develop along the south coast ofthe Korean peninsula. These areas are famous for sea farming. Specially, strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures. Tide height in oyster farm is possible to measure by using interferometric phase and intensity of SAR data. It is assumed that the radar signals from oyster farm could be considered as double-bouncing returns by vertical and horizontal bars. But, detailed backscattering mechanism and polarimetric characteristics in oyster farm had not been well studied. We could not demonstrate whether the assumption is correct or not and exactly understand what the properties of back scattering were in oyster farm without full polarimetric data. The results of AIRSAR L-band POLSAR data, experiments in laboratory and JERS-l images are discussed. We carried out an experiment simulating a target structure using vector network analyser (Y.N.A.) in an anechoic chamber at Niigata University. Radar returns from vertical poles are stronger than those from horizontal poles by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with height of vertical poles. As black absorber replaced AI-plate in bottom surface, double bounce in vertical pole decreased. It is observed that not all oyster farms are characterized by double bounced scattering in AIRSAR data. The image intensity of the double bounce dominant oyster farm was investigated with respect to that of oyster farm dominated by single bounce in JERS-l SAR data. The image intensity model results in a correlation coefficient (R2 ) of 0.78 in double bounce dominant area while that of 0.54 in single bouncing dominant area. This shows that double bounce dominant area should be selected for water height measurement using In8AR technique.

  • PDF

A Study on the Development of Level Sensor using Frequency Modulated Continuous Wave (주파수 변조 연속파를 이용한 레벨 측정 시스템 개발에 관한 연구)

  • Park, Dong-Kook;Han, Tae-Kyoung;Park, In-Yong;Yoon, Chun-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.497-501
    • /
    • 2004
  • In this paper, it is presented a level sensor for measuring a level of the contents of cargo tank using frequency modulated continuous wave(FMCW). The frequency range is 10∼11 GHz, the radar cross section(RCS) of test target is $0.8\textrm{m}^2$ of metal plate. The experiment is performed in laboratory and open ground, the sweep time of the signal is 100 ms, the pyramidal horn antenna of about 22 dBi gain is used, and input power of antenna is about 8 dBm The beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is measured about 10 cm due to nonlinear of voltage controlled oscillator(VCO).

Detection Scheme of Heart and Respiration Signals for a Driver of Car with a Doppler Radar (도플러 레이더 기반 차량 운전자의 심박 및 호흡 신호 검출 기법 연구)

  • Yun, Younguk;Lee, Jeongpyo;Kim, Jinmyung;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • Purpose: In this paper, we propose an algorithm for detecting respiratory rate and heart beat of a driver of car by exploiting Doppler radar, and verifying the feasibility of the study through experiments. Method: In this paper, we propose a weighted peak detection technique using peak frequency values. The tests are performed in stop-state and driving-state, and the experiment result is analyzed by two proposed algorithms. Result: The results showed more than 95% and 96% accuracy of respiratory and heart rate, respectively. It also showed more than 72% and 84% accuracy of those even for driving experiments. Conclusion: The proposed detection scheme for vital signs can be used for the safety of the driver as well as for prevention of a large size of car accidents.

밀리미터파 레이다 시스템을 이용한 전력선 검출

  • Kang, Gum-Sil;Yong, Sang-Soon;Kang, Song-Doug;Kim, Jong-Ah;Chang, Young-Jun
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.242-250
    • /
    • 2004
  • This paper describes the detection method of wire-like obstacles using millimeter-wave radar system. Passive sensor like CCD camera can be used for the detection of high power electric cables on the hills or mountains and it can give very good quality of obstacle target information. But this system is very limited to use by bad weather condition. The detection capability for different diameters of wire targets using millimeter radar system have been accomplished. To simulate the target on the moving helicopter, rotating targets are used with fixed radar system. In the experiment 11mm, 16mm and 22mm diameter of wires have been detected in single, two and three wires in one position. The detected signal from single wire was very clear on gray level image. Three wires placed very closely together could be recognized in range, cross range image plane. For two and three wires, blur effect due to mutual scattering effect is observed.

  • PDF

A Study on the Pipe Position Estimation in GPR Images Using Deep Learning Based Convolutional Neural Network (GPR 영상에서 딥러닝 기반 CNN을 이용한 배관 위치 추정 연구)

  • Chae, Jihun;Ko, Hyoung-yong;Lee, Byoung-gil;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.39-46
    • /
    • 2019
  • In recently years, it has become important to detect underground objects of various marterials including metals, such as detecting the location of sink holes and pipe. For this reason, ground penetrating radar(GPR) technology is attracting attention in the field of underground detection. GPR irradiates the radar wave to find the position of the object buried underground and express the reflected wave from the object as image. However, it is not easy to interpret GPR images because the features reflected from various objects underground are similar to each other in GPR images. Therefore, in order to solve this problem, in this paper, to estimate the piping position in the GRP image according to the threshold value using the CNN (Convolutional Neural Network) model based on deep running, which is widely used in the field of image recognition, As a result of the experiment, it is proved that the pipe position is most reliably detected when the threshold value is 7 or 8.

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

Activity Type Detection Of Random Forest Model Using UWB Radar And Indoor Environmental Measurement Sensor (UWB 레이더와 실내 환경 측정 센서를 이용한 랜덤 포레스트 모델의 재실활동 유형 감지)

  • Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.899-904
    • /
    • 2022
  • As the world becomes an aging society due to a decrease in the birth rate and an increase in life expectancy, a system for health management of the elderly population is needed. Among them, various studies on occupancy and activity types are being conducted for smart home care services for indoor health management. In this paper, we propose a random forest model that classifies activity type as well as occupancy status through indoor temperature and humidity, CO2, fine dust values and UWB radar positioning for smart home care service. The experiment measures indoor environment and occupant positioning data at 2-second intervals using three sensors that measure indoor temperature and humidity, CO2, and fine dust and two UWB radars. The measured data is divided into 80% training set data and 20% test set data after correcting outliers and missing values, and the random forest model is applied to evaluate the list of important variables, accuracy, sensitivity, and specificity.