• 제목/요약/키워드: RVE

Search Result 58, Processing Time 0.02 seconds

Effects of Numerical Modeling on Concrete Heterogeneity (콘크리트 비균질성에 대한 수치모델의 영향)

  • Rhee, In-Kyu;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.189-198
    • /
    • 2006
  • The composition of most engineering materials is heterogeneous at some degree. It is simply a question of scale at which the level of heterogeneity becomes apparent. In the case of cementitious granular materials such as concrete the heterogeneity appears at the mesoscale where it is comprised of aggregate particles, a hardened cement paste and voids. Since it is difficult to consider each separate particle in the topological description explicitly, numerical models of the meso-structure are normally confined to two-phase matrix particle composites in which only the larger inclusions are accounted for. 2-D and 3-D concrete blocks(Representative Volume Element, RVE) are used to simulating heterogeneous concrete meso-structures in the form of aggregates in the hardened mortar with nearly zero-thickness linear or planar interfaces. The numerical sensitivity of these meso-structures are Investigated with respect to the different morphologies of heterogeneity and the different level of coupling constant among fracture mode I, II and III. In addition, a numerically homogenized concrete block in 3-D using Hashin-Shtrikman variational bounds provides an evidence of the effective cracking paths which are quite different with those of heterogenous concrete block. However, their average force-displacement relationship show a pretty close match each other.

Prediction of the Equivalent Elastic Properties of Fiber Reinforced Composite Materials and Structural Analysis of Composite Satellite Panel (섬유강화 복합재료 등가탄성계수 예측과 복합재료 위성패널의 구조해석)

  • You, Won-Young;Lim, Jae Hyuk;Sohn, Dongwoo;Kim, Sun-Won;Kim, Sung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.48-56
    • /
    • 2013
  • In this paper, the equivalent elastic properties of fiber reinforced plastic laminar are investigated using various homogenization schemes. Although there are several methods for predicting the equivalent elastic properties such as analytical formula or semi-empirical formula, most of them have some limitations or are not much accurate when handling new composite material consisting of various fiber, matrix and fiber-volume fraction ratio. To resolve the issues, computational homogenization scheme is adopted with a representative volume element (RVE) comprised of a set of finite elements. Finally, the equivalent elastic properties are obtained by applying periodic boundary conditions. The obtained results are compared with those by the existing methods and test results. Also its effect on structural analysis results of the composite satellite panel is investigated.

MOUTHGUARD FOR PREVENTING ORAL INJURIES IN CHILDREN (소아환자에 있어서 외상방지를 위한 마우스가드의 치험례)

  • Kim, Kyoung-Hee;Kim, Jong-Soo;You, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.537-542
    • /
    • 2005
  • Dentofacial trauma can result in tooth fracture, avulsion, facial bone fracture. The Unites states and Japan mandated the use of mouthguards for contact sports. But, Korean didn't. Mouthguards divided into ready-made type and custom-made type. Mouthguards protect the lips, intraoral soft tissues, teeth and provide the mandible with resilient support to prevent jaw fracture and dislocations. Sports-related accidents have been reported to be one of the most common causes of dentofacial trauma. Sports trauma of involving teeth with incomplete root formation cause long chair time, multiple visit, economic considerations, additional dental services. So, mouthguards can offer considerable protection against sports-related trauma.

  • PDF

Prediction Algorithm for Transverse Permeability of Unidirectional Fiber Reinforced Composites with Electric-Hydraulic Analogy (전기-유압 유사성을 활용한 단방향 섬유 강화 복합재료의 수직 방향 투수 계수 예측 알고리즘)

  • Bae, Sang-Yun;Jo, Hyeonseong;Kim, Seong-Su
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.334-339
    • /
    • 2022
  • This study suggests the prediction algorithm for transverse permeability, represented the flow resistance during the manufacturing process of composite, of unidirectional continuous fiber reinforced plastics. The cross-sectional shape of representative volume element (RVE) is considered to reflect fiber arrangement. The equivalent length is used as a factor to express the change of resin flow according to fiber arrangement. The permeability prediction algorithm is created by grafting the Electro-Hydraulic analogy and validity is confirmed. The code for permeability prediction was composed by means of MATLAB and Python, flow analysis was performed by using FLUENT. The algorithm was verified as the permeability results obtained through Algorithm and numerical analysis were almost identical to each other, and the calculation time was reduced around 1/450 compared to the numerical analysis.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

Screening and Characterization of LTR Retrotransposons in the genomic DNA of Pleurotus eryngii (큰느타리버섯 유전체내 LTR Retrotransposon 유전자 탐색 및 특성연구)

  • Kim, Sinil;Le, Quy Vang;Kim, Sun-Mi;Ro, Hyeon-Su
    • The Korean Journal of Mycology
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • Transposable elements (TEs) are mobile DNA elements that often cause mutations in genes and alterations in the chromosome structure. In order to identify and characterize transposable elements (TEs) in Pleurotus eryngii, a TE-enriched library was constructed using two sets of TE-specific degenerated primers, which target conserved sequences of RT and RVE domains in fungal LTR retrotransposons. A total of 256 clones were randomly chosen from the library and their insert sequences were determined. Comparative investigation of the insert sequences with those in repeat element database, Repbase, revealed that 71 of them were found to be TE-related fragments with significant similarity to LTR retrotransposons from other species. Among the TE sequences, the 70 TEs were Gypsy-type LTR retrotransposons, including 20 of MarY1 from Tricholoma matsutake, 26 of Gypsy-8_SLL from Serpula lacrymans, and 16 of RMER17D_MM from mouse, whereas a single sequence, Copia-48-PTR, was found as only Copia-type LTR retrotransposon. Southern blot analysis of the HindIII-digested P. eryngii genomic DNA showed that the retrotransposon sequences similar to MarY1 and Gypsy-8_SLL were contained as high as 14 and 18 copies per genome, respectively, whereas other retrotransposons were remained low. Moreover, both of the two Gypsy retrotransposons were expressed in full length mRNA as shown by Northern blot analysis, suggesting that they were functionally active retrotransposons.

The Effect of Phrenic Nerve Paralysis After Pediatric Cardiac Surgery on Postoperative Respiratory Care (소아 심혈관 수술 후 발생한 횡격신경마비가 술후 호흡관리에 미치는 영향)

  • 윤태진;이정렬
    • Journal of Chest Surgery
    • /
    • v.29 no.10
    • /
    • pp.1118-1122
    • /
    • 1996
  • From January 1990 through December 1995, 43 patients underwent diaphragmatic plication for the management of phrenic nerve palsy .complicating various pediatric cardiovascular surgery. Their mean age at plication was 11.1 months and sex ratio was 31 males to 12 females. In order of decreasing incidence, the primary cardiovascular procedures included modified Blalock-Taussig shunt (7), total correction for the Tetralogy of Falloff (7), arterial switch operation (6), unifocalization for the pulmonary atresia with VSD (3), modified Fontan operation (3), VSD patch closure (3) and others. The involved sides of diaphragm were right in 17, left in 2) and bilateral in 3. Extensive pericardial resection with electocauterization of resected margin was thought to be the most common cause of phrenic nerve palsy (20). The interval between primary operation and plication ranged from the day of operation to 98 days (median 11 days). The methods of plication were central pleating technique(plication with phrenic nerve branch preservation) in 41, and other technique In 2. 10 patients died after plication (7: early, 3; late), and the causes of death were thought to be unrelated to plication itself. Among the 36 early survivors, extubation or cessation of positive pressure ventilation could be accomplished between 1 and 24 days postoperatively(mean : 4.5). Cumulative follow-up was 92 patient years without major complications. Postoperative follow-up fluoroscopy was performed in 6 patients, and the location and movement of plicated diaphragms were satisfactory in 5 patients. We concluded that diaphragmatic plication with preservation of phrenic n rve branch could lead to cessation of positive pressure ventilation and complete recovery of diaphragmatic function in the long term, unless the phrenic nerve was irreversibly damaged.

  • PDF

Spatial dispersion of aggregate in concrete a computer simulation study

  • Hu, Jing;Chen, Huisu;Stroeven, Piet
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.301-312
    • /
    • 2006
  • Experimental research revealed that the spatial dispersion of aggregate grains exerts pronounced influences on the mechanical and durability properties of concrete. Therefore, insight into this phenomenon is of paramount importance. Experimental approaches do not provide direct access to three-dimensional spacing information in concrete, however. Contrarily, simulation approaches are mostly deficient in generating packing systems of aggregate grains with sufficient density. This paper therefore employs a dynamic simulation system (with the acronym SPACE), allowing the generation of dense random packing of grains, representative for concrete aggregates. This paper studies by means of SPACE packing structures of aggregates with a Fuller type of size distribution, generally accepted as a suitable approximation for actual aggregate systems. Mean free spacing $\bar{\lambda}$, mean nearest neighbour distance (NND) between grain centres $\bar{\Delta}_3$, and the probability density function of ${\Delta}_3$ are used to characterize the spatial dispersion of aggregate grains in model concretes. Influences on these spacing parameters are studied of volume fraction and the size range of aggregate grains. The values of these descriptors are estimated by means of stereological tools, whereupon the calculation results are compared with measurements. The simulation results indicate that the size range of aggregate grains has a more pronounced influence on the spacing parameters than exerted by the volume fraction of aggregate. At relatively high volume density of aggregates, as met in the present cases, theoretical and experimental values are found quite similar. The mean free spacing is known to be independent of the actual dispersion characteristics (Underwood 1968); it is a structural parameter governed by material composition. Moreover, scatter of the mean free spacing among the serial sections of the model concrete in the simulation study is relatively small, demonstrating the sample size to be representative for composition homogeneity of aggregate grains. The distribution of ${\Delta}_3$ observed in this study is markedly skew, indicating a concentration of relatively small values of ${\Delta}_3$. The estimate of the size of the representative volume element (RVE) for configuration homogeneity based on NND exceeds by one order of magnitude the estimate for structure-insensitive properties. This is in accordance with predictions of Brown (1965) for composition and configuration homogeneity (corresponding to structure-insensitive and structure-sensitive properties) of conglomerates.