• Title/Summary/Keyword: RUSLE(Revised Universal Soil Loss Equation)

Search Result 52, Processing Time 0.026 seconds

Characteristics Analysis for RUSLE Factors based on Measured Data of Gangwon Experimental Watershed (I) (강원지역 시험유역에 대한 RUSLE 인자특성 분석 (I) - 강우침식능 인자를 중심으로 -)

  • Lee, Jong-Seol;Chung, Jae-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.111-117
    • /
    • 2009
  • The RUSLE(Revised Universal Soil Loss Equation) has been most widely used to estimate sediment yield in Korea. However RUSLE factors have not been verified based on measured data of sediment yield. The analysis of characteristics for the rainfall erosivity factor R was performed in this study. The R factor of RUSLE is expressed as multiple of total rainfall energy and maximum 30 min rainfall intensity. In this study, the characteristics of 10 rainfall energy equations were investigated using data measured in Gangneung experimental watershed, and applicability of each equations was reviewed based on results of the correlation analysis between measured sediment yield and total rainfall, between measured sediment yield and maximum intensity, and between measured sediment yield and total rainfall energy yield. Also, the relationship of I30 and I60 was proposed using 10-min rainfall data during 9 years.

The Estimation of Annual Average Rainfall Erosivity in accordance with Equation of Rainfall Kinetic Energy (강우에너지식에 따른 연평균 강우침식능 산정)

  • Lee, Jong-Seol;Chung, Jae-Hak;Won, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.363-363
    • /
    • 2011
  • 무분별한 개발사업으로 인하여 발생되는 토양 침식 피해를 최소화시키기 위해서는 정확한 토양 침식량을 추정해야 한다. 현재 토양 침식량을 추정하기 위한 공식으로 Wischmeier와 Smith(1997)가 발표한 범양 토양손실공식(RUSLE, Revised Universal Soil Loss Equation)을 주로 사용하고 있다. RUSLE 공식의 매개변수 중 하나인 강우침식능 인자 R은 실무에서는 단일강우 확률강우량의 시간분포 강우량에 대하여 강우침식능을 산정하는 방법을 널리 사용하고 있으나, 연평균 강우침식능을 사용하는 경우도 많다. 국립방재연구소(2009)는 전국 53개소의 1960년대~2008년까지의 1시간 강우자료를 이용하여 연평균 강우침식능을 산정한 바 있고, 본 연구에서는 국립방재연구소의 자료(2009)에 23개소를 추가 하고 2009년~2010년 강우자료를 추가하여 강우침식능을 산정하였다. 강우침식능 산정 시 사용되는 강우 운동에너지 공식은 국내외에서 여러 가지 공식이 제안되고 있으나, 본 연구에서는 RUSLE와 USLE에서 추천하고 있는 식과 노재경 등(1984)의 식, van Dijk(2002) 식을 이용하여 각각의 연평균 강우침식능을 산정하고 전국 연평균 강우침식도를 재산정하였다. 연평균 R값의 76개 지점평균은 RUSLE 식 4890, USLE 식 5538, 노재경 식 4608, van Dijk 식 5444 MJ/ha mm/hr로 산정되었다. 에너지식에 따라 값은 최대 930 MJ/ha mm/hr 차이를 보였으나, 분포 양상은 경북 지역을 제외한 모든 유역에서 비슷함을 알 수 있었다. 노재경 식은 서울과 수원의 관측자료를 이용하여 제안된 식으로 타 식에 비하여 우리나라의 강우특성을 비교적 잘 고려한다고 판단되지만, 시간 및 공간적으로 제한된 데이터를 이용하여 제안된 식이므로 실무 적용을 위해서는 추가적인 검정이 필요할 것으로 사료된다.

  • PDF

Applying Weighting Value Method for the Estimation of Monthly Soil Erosion (월별 토사유실량 평가를 위한 가중치 기법의 시험 적용)

  • Lee Geun-Sang;Park Jin-Hyeog;Hwang Eui-Ho;Koh Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.70-74
    • /
    • 2005
  • Soil particles from rainfall flow into reservoir and give lots of influence In water quality because the geological conditions and landcover characteristics of imha basin have a weakness against soil loss. Especially, much soil particles induced to reservoir in shape of muddy water when it rains a lot because the geological characteristics of imha reservoir are composed of clay and shale layer. Therefore, field turbidity data can be Indirect-standards to estimate the soil erosion of imha basin. This study evaluated annual soil erosion using GIS-based RUSLE (Revised Universal Soil Loss Equation) and developed rainfall weighting value method using time-series rainfall data to estimate monthly soil erosion. In view of field turbidity data(2003 yr), we can find out monthly soil erosion with rainfall weighting value is more efficient than that with monthly rainfall data.

  • PDF

Applying Evaluation of Soil Erosion Models for Burnt Hillslopes - RUSLE, WEPP and SEMMA (산불사면에 대한 토양침식모형의 적용 평가 - RUSLE, WEPP, SEMMA)

  • Park, Sang Deog;Shin, Seung Sook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.221-232
    • /
    • 2011
  • Applicability of three soil erosion models for burnt hillslopes was evaluated. The models were estimated with the data from plots established after tremendous wildfire occurred in the east coastal region. Soil erosion and surface runoff were simulated by the Water Erosion Prediction Project (WEPP) and the Revised Universal Soil Loss Equation (RUSLE) of application mode for disturbed forest areas and the Soil Erosion Model for Mountain Areas (SEMMA) developed for burnt hillslopes. Simulated sediment yield and surface runoff were compared with the measured those. In maximum value of sediment yield, three models was under-predicted and RUSLE and WEPP had difference of over two times. SEMMA showed the best model response coefficient, determination coefficient and the model efficiency. In application of models to the soil erosion according to the elapsed year after wildfire, all models were underestimated in initial stage disturbed by wildfire. Evaluation of models in this burnt hillslopes was shown the tends to under-predict soil erosion for larger measured values. Although a lot of sediment can be generated in small rainfall event as fine-grained soil of the high water repellency was exposed excessively right after wildfire, this under-prediction was shown that those models have a limit to estimate the weighted factors by wildfire.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.

Estimation of the Amount of Soil toss and Main Sources of Riverbed Sediments in Each Tributary Basin of the Seomjin River in Sunchang Area, Korea (순창지역 섬진강 지류별 토양유실량 산정과 하상퇴적물의 주공급원에 관한 고찰)

  • Kwak Jae-Ho;Yang Dong-Yoon;Lee Hyun-Koo;Kim Ju-Yong;Lee Seong-Gu
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.607-622
    • /
    • 2005
  • This study was carried out in order to evaluate where the soil loss was mainly occurred, .and to verify how riverbed sediments in the tributaries of the Seomjin River were related to their source rocks distributed in Sunchang area. The study area including the Seomjin River with 4 tributaries of Kyeongcheon, Okgwacheon, Changjeong-cheon and Ipcheon was divided into 10 watershed. The RUSLE (Revised Universal Soil Loss Equation) was estimated for all the grids (10 m cells) in the corresponding watershed. The amount of soil loss per unit area was calculated as follows: dry fold (53,140.94 tons/ha/year), orchard (25,063.38 tons/ha/year), paddy field (6,506.7 tons/ha/year) and Idlest (6,074.36 tons/ha/year). The differences of soil loss per unit area appear to be depends on areas described earlier. Soil erosion hazard zones were generally distributed within dry fields. Several thematic maps such as land use maps, topographical maps and soil maps were used as a data to generate the RUSLE factors. The amount of soil loss, computed by using the RUSLE, showed that soil loss mainly occurred at the regions where possible source rocks were distributed along the stream. Based on the this study on soil loss and soil erosion hazard zone together with chondrite-normalized REE patterns that were previously analyzed in same study area, a closed relationship between riverbed sediments and possible source rocks is formed. Especially in the Okgwacheon that are widely distributed by various rocks, chondrite-normalized REE pattern derived from the riverbed sediments, source rock and soil is expected to have a closed relationship with the distribution of soil loss.

Estimation of Soil Erosion for Each Spatial Resolution on the Climate Change (기후변화에 따른 공간해상도별 토양유실량 평가)

  • Lee, Mi-Seon;Park, Jong-Yoon;Jung, In-Kyun;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.529-533
    • /
    • 2008
  • 본 연구는 미래기후변화가 공간해상도(5, 10, 30m)에 따른 토양유실량의 변화에 미치는 영향을 분석하고 자하였다. 연구대상지역은 경안천 최상류에 위치한 $1.16km^2$의 농촌 소유역을 대상으로 공간해상도별(5, 10, 30m) RS 및 GIS 자료를 생성하고, GIS 기반의 RUSLE(Revised Universal Soil Loss Equation) 모형을 채택하여 토양유실량을 분석하였다. 기후변화 시나리오는 IPCC(Intergovernmental Panel on Climate Change)에 서 제공하는 GCM(Global climate model) 중에서 MIROC3.2 hire의 A1B, B1 시나리오를 이용하였으며, 과거 30년간(1977-2006)의 기상자료 통계정보를 기준으로 Change Factor Downscaling 기법을 적용하여 2020s년 (2010-2039), 2050s년(2040-2069), 2080s년(2069-2099) 전후의 각 30년간의 미래 강우량을 재생산하여 사용하였다. 그 결과 강수량은 2080s년에 A1B 시나리오의 경우 연평균 강수량은 270.37mm, 최대 강수량은 65.71mm 증가하였고, B1 시나리오의 경우 연평균 강수량은 37.11mm, 최대 강수량은 48.46mm 증가하는 것으로 나타났다. 구축한 미래 강우량을 RUSLE 인자 중 R 인자에 적용하여 2020s년, 2050s년, 2080s년의 토양유실량을 분석한 결과, 미래강수량이 증가함에 따라 공간해상도별 토양유실량도 증가하는 것으로 분석되었다. 평균토양유실량을 시나리오별로 보면, A1B 시나리오의 경우 2080s을 기준으로 1/5,000 scale에서는 약 0.18 ton/ha/year, 1/25,000 scale에서는 약 0.07 ton/ha/year, 1/50,000 scale에서는 약 0.07 ton/ha/year의 유실량이 각 공간해상도별로 증가하였다. B1 시나리오의 경우 2080s을 기준으로 1/5,000 scale에서는 약 0.03 ton/ha/year, 1/25,000 scale에서는 약 0.01 ton/ha/year, 1/50,000 scale에서는 약 0.01 ton/ha/year의 토양유실량이 증가한 것으로 분석되었다.

  • PDF

A Study on Correlation between RUSLE and Estuary in Nakdong River Watershed (낙동강 유역의 토양유실량과 하구지형의 상관성 분석)

  • Hwang, Chang-Su;Kim, Kyung-Tag;Oh, Che-Young;Jin, Cheong-Gil;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.3-10
    • /
    • 2010
  • The development of various spatial information and GIS has led to the research on interpretation of natural phenomena and correlational studies. This study is aimed to analyze the correlation between RUSLE(Revised Universal Soil Loss Equation) around Nakdong River area during the period of 1955 to 2005 and the amount of area change in the islets at the estuary terrain calculated in the study "Change Detection at the Nakdong Estuary Delta using Satellite Image and GIS". For the calculation of RUSLE, The 'Revised-USLE' model, a modified USLE model commonly used in Korea was used. For the rainfall erosion factor to calculate and compare the area of islets, the actual observation data for one year before the observation of satellite image from all observatories across Korea was used. The correlation coefficient between RUSLE and area change of islets was 0.57 for Jinwoo Islet; 0.7 for Sinja Islet; 0.87 for Doyodeung. This results showed that there was a great influence from Doyodeung where the main water way of Nakdong River runs. This study showed that the study using USLE for various fields and through identifying the characteristics of each factor is useful to understand natural phenomenon in practice.

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

USLE/RUSLE Factors for National Scale Soil Loss Estimation Based on the Digital Detailed Soil Map (수치 정밀토양에 기초한 전국 토양유실량의 평가를 위한 USLE/RUSLE 인자의 산정)

  • Jung, Kang-Ho;Kim, Won-Tae;Hur, Seung-Oh;Ha, Sang-Keon;Jung, Pil-Kyun;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Factors of universal soil loss equation, USLE, and its revised version, RUSLE for Korean soils were reevaluated to estimate the national scale of soil loss based on digital soil maps. Rainfall erosivity factor, R, of 158 locations of cities and counties were spacially interpolated by the inverse distance weight method. Soil erodibility factor, K, of 1321 soil phases of 390 soil series were calculated using the data of soil survey and agri-environmental quality monitoring. Topographic factor, LS, was estimated using soil map of 1:25,000 scale with soil phase and land use type. Cover management factor, C, of major crops and support practice factor, P, were summarized by analyzing the data of lysimeter and field experiments for 27 years (1975-2001) in the National Institute of Agricultural Science and Technology. R factor varied between 2322 and 6408 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$ and the average value was 4276 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$. The average K value was evaluated as 0.027 MT hr $MJ^{-1}$ $mm^{-1}$. The highest K factor was found in paddy rice fields, 0.034 MT hr $MJ^{-1}$ $mm^{-1}$, and K factors in upland fields, grassland, and forest were 0.026, 0.019, and 0.020 MT hr $MJ^{-1}$ $mm^{-1}$, respectively. C factors of upland crops ranged from 0.06 to 0.45 and that of grassland was 0.003. P factor varied between 0.01 and 0.85.