Estimation of the Amount of Soil toss and Main Sources of Riverbed Sediments in Each Tributary Basin of the Seomjin River in Sunchang Area, Korea

순창지역 섬진강 지류별 토양유실량 산정과 하상퇴적물의 주공급원에 관한 고찰

  • Kwak Jae-Ho (Geological & Environment Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Yang Dong-Yoon (Geological & Environment Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee Hyun-Koo (Department of Geology, Chungnam National University) ;
  • Kim Ju-Yong (Geological & Environment Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee Seong-Gu (Geological & Environment Hazards Division, Korea Institute of Geoscience & Mineral Resources)
  • 곽재호 (한국지질자원연구원 지질환경재해연구부) ;
  • 양동윤 (한국지질자원연구원 지질환경재해연구부) ;
  • 이현구 (충남대학교 지질환경과학과) ;
  • 김주용 (한국지질자원연구원 지질환경재해연구부) ;
  • 이승구 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2005.12.01

Abstract

This study was carried out in order to evaluate where the soil loss was mainly occurred, .and to verify how riverbed sediments in the tributaries of the Seomjin River were related to their source rocks distributed in Sunchang area. The study area including the Seomjin River with 4 tributaries of Kyeongcheon, Okgwacheon, Changjeong-cheon and Ipcheon was divided into 10 watershed. The RUSLE (Revised Universal Soil Loss Equation) was estimated for all the grids (10 m cells) in the corresponding watershed. The amount of soil loss per unit area was calculated as follows: dry fold (53,140.94 tons/ha/year), orchard (25,063.38 tons/ha/year), paddy field (6,506.7 tons/ha/year) and Idlest (6,074.36 tons/ha/year). The differences of soil loss per unit area appear to be depends on areas described earlier. Soil erosion hazard zones were generally distributed within dry fields. Several thematic maps such as land use maps, topographical maps and soil maps were used as a data to generate the RUSLE factors. The amount of soil loss, computed by using the RUSLE, showed that soil loss mainly occurred at the regions where possible source rocks were distributed along the stream. Based on the this study on soil loss and soil erosion hazard zone together with chondrite-normalized REE patterns that were previously analyzed in same study area, a closed relationship between riverbed sediments and possible source rocks is formed. Especially in the Okgwacheon that are widely distributed by various rocks, chondrite-normalized REE pattern derived from the riverbed sediments, source rock and soil is expected to have a closed relationship with the distribution of soil loss.

하상퇴적물의 공급원을 규명하고자 전라남북도의 경계부근에 위치하는 섬진강 본류와 그 지류들을 포함하는 유역에서 발생하는 하상퇴적물의 희토류원소 분포양상과 토양유실량을 결석하였다. 연구지역 수계는 섬진강 본류를 비롯하여 순창읍을 관통하는 경천, 옥과면의 옥과천, 입면의 창정천과 입천이면, 각 수계에 직${\cdot}$간접적으로 퇴적물을 공급할 수 있다고 생각되는 10개 유역을 대상으로 토양유실량 분석을 실시하였다. 토양유실량 예측공식인 RUSLE 인자를 생성하기 위하여 토지이용도, 지형도, 토양도 등의 자료를 사용하었고, grid 기반의 10m 셀의 격자형 데이터로 구축한 RUSLE 인자들의 중첩분석을 통하여 연간 토양유실량을 예측하였다. 당위면적당 토양유실량은 밭(53,140.94 tons/ha/year), 과수원(25,063.38 tons/ha/year), 논(6,506.7 tons/ha/year), 산림 (6,074.36 tons/ha/year) 지역 순으로 우세한 것으로 나타났다. 침식위험지역으로 분석된 지역은 대부분 밭 지역 내에 분포하였다. 토양유실은 하천을 따라 분포하는 근원암 지역에서 주로 발생하였으며, 토양유실량, 침식위험지역 분포, 하상퇴적물과의 희토류원소 분포양상에 있어서의 상관관계 등을 고려해볼 때, 경천은 순창엽리상화강암, 옥과천은 대강엽리상화강암, 입천은 설옥리층의 퇴적물이 하천에 주로 유입되는 것으로 판단된다. 특히 여러 암종이 넓은 면적에 분포하고 있는 옥과천의 경우, 하싱퇴적물, 기반암 및 토양의 희토류원소 분포양상과 토양유실량 분석결과를 함께 활용함으로써 더욱 신뢰도 높은 상관관계를 밝힐 수 있을 것으로 사료된다.

Keywords

References

  1. 국립방재연구소 (1998) 개발에 따른 토사유출량 산정에 관한 연구(I). 313p
  2. 김상민, 임상준, 박승우 (2004) 농촌유역의 산림지 면적감소에 따른 유역 토양유실량 변화 추정. 한국농촌계획학회지, 10권(1), p. 19-26
  3. 김양수, 박무종, 박덕근 (1998) 토사유출량 산정기법의 적용성 분석. IHP 연구보고서
  4. 김정빈, 김용준, 홍세선 (1990) 담양-진안 사이에 분포하는 엽리상화강암류에 대한 암석화학적 연구. 광산지질학회지, 23권, p. 87-104
  5. 김주훈, 김경탁, 연규방 (2003) GIS를 이용한 토양침식 위험지역 분석. 한국지리정보학회지, 6권(2), p. 22-32
  6. 박경훈 (2003) GIS 및 RUSLE 기법을 활용한 금호강유역의 토양침식위험도 평가. 한국지리정보학회지, 6권(4), p. 24-36
  7. 서경원, 지정만, 장윤호 (1998) 한반도 서해안 변산-태안지역연안 퇴적물과 육상지질과의 지화학적 상관관계. 자원환경지질, 31권, p. 69-84
  8. 손광익, 노준우 (2003) GIS를 이용한 USLE의 LS인자 산정기법 개발. 대한토목학회지, 23권(4), p. 281-287
  9. 신계종 (1999) 지형공간정보체계를 이용한 유역의 토양유실분석. 강원대학교 박사학위논문, 31p
  10. 양인태, 박재훈, 천기선 (2003) 산불발생지역에서의 토양유실량에 관한 연구. 한국지형공간정보학회지, 11권(2), p. 11-16
  11. 오정학, 정성관 (2005) 토지자원관리를 위한 낙동강 유역의 잠재적 토양유실량 산정. 한국 농촌계획학회지, 11권(2), p. 9-19
  12. 이규성 (1994) 산림유역의 토양유실량 예측을 위한 지리정보시스템의 범용토양유실식에의 적용. 한국임학회지, 83권(3), p. 322-330
  13. 이병주, 김정찬, 김유봉, 조등룡, 최현일, 전희영, 김복철 (1997) 광주 지질도폭설명서 (1:250,000). 한국자원연구소
  14. 이승구, 양동윤, 홍세선, 곽재호, 오근창 (2003) 회토류원소를 이용한 순창지역 섬진강 수계 내 하상퇴적물의 기원지 연구. 지질학회지, 39권, p. 81-97
  15. 장영률, 이근상, 조기성 (2002) GIS 기반에서 토양침식의 정량화를 위한 해상도 결정에 관한 연구. 한국GIS학회지, 10권(2), p. 301-316
  16. 주승환, 김성재 (1986) 영남육괴, Rb/Sr 연대측정연구(II) -지리산 일대 화강암질 편마암 및 편마상화강암류-. 동력자원연구소보고서, KR-87, p. 7-33
  17. 지정만, 장윤호, 오재경, 이연희 (2000) 한반도 서해안 금강하구 연안퇴적물과 육상지질과의 지화학적 상관관계. 자원환경지질학회지, 33권, p. 447-467
  18. 한국건설기술연구원 (1992) 댐 건설을 위한 유역단위 비유사량 조사 . 연구. 건설교통부
  19. 한국수자원학회 (1998) 개발사업으로 인한 토양손실량 예측 및 침사지 설계. 제6회 수공학워크샵, p. 8-9
  20. 한재석, 김주훈 (2001) GIS와 USLE를 이용한 유역의 토사발생량 분석. 환경관리학회지, 7권(1), p. 145-152
  21. Anderson, J.R. (1976) A land use and land cover classification system for use with remote sensor data. USGS Geological Survey Professional Paper, 964p
  22. Bernie, E. (1999) Estimating Soil Erosion Using RUSLE Using ArcView. Purdue University February, 20
  23. Cullers, R.L., Chaudhuri, S., Kilbane, N. and Koch, R. (1979) Rare earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochimica Cosmochimica Acta, v. 43, p.1285-1302 https://doi.org/10.1016/0016-7037(79)90119-4
  24. Cullers, R.L., Barrett, T, Carlson, R. and Robinson, B. (1987) Rare earth element and mineralogic Changes in Holocene soil and stream sediment: A case study in the West Mountains, Colorado, U. S. A. Chemical Geology, v. 63, p. 275-297 https://doi.org/10.1016/0009-2541(87)90167-7
  25. Cullers, R.L., Basu, A. and Suttner, L.J. (1989) Geological signature of provence in sand size material in soils and stream sediment near the Tobacco Root Batholith, Montana, U.S.A. Chemical Geology, 70, p. 335-348 https://doi.org/10.1016/0009-2541(88)90123-4
  26. Elderfield, H., Upstill-Goddard, R. and Sholkovitz, E.R. (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimia Acta, v. 54, p. 971-991 https://doi.org/10.1016/0016-7037(90)90432-K
  27. Ericson, A.J. (1997) Aids for estimating soil erodibility -K value class and soil loss tolerance. U.S. Department of Agriculture. Soil Conservation Service, Salt Lake City of Utah
  28. Foster, G.R. and Wischmeier, W.H. (1974) Evaluating irregular slopes for soil loss prediction. Transaction of ASAE, v. 17, p. 305-309
  29. Lee, S.G., Masuda, A. and Kim, K.S. (1994) An early Pro-terozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chemical Geology, v. 114, p. 59-67 https://doi.org/10.1016/0009-2541(94)90041-8
  30. Masuda, A., Nakamura, N. and Tanaka, T. (1973) Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochimica et Cosmochimica Acta, v. 37, p. 239- 248 https://doi.org/10.1016/0016-7037(73)90131-2
  31. Moore and Burch (1986) Physical basis of the length-slope factor in die Universal Soil Loss Equation. Soil Science Society of America Journal, v. 50, p. 1294-1298 https://doi.org/10.2136/sssaj1986.03615995005000050042x
  32. Piper, D.Z. (1985) Rare earth elements in the sedimentary cycle: a summary. Chemical Geology, v. 14, p. 285-304 https://doi.org/10.1016/0009-2541(74)90066-7
  33. Renard, K.G., Foster, G.R., Foster, G.A. Weesies, D.K. McCool and Yoder, D.C. (1996) Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USAD Agriculture Handbook, 703p
  34. Sholkovitz, E.R. (1992) Chemical evolution of rare earth elements: Fractionation between colloidal and solution phases of filtered river water. Earth Planetary Science Letters, v. 114, p. 77-84 https://doi.org/10.1016/0012-821X(92)90152-L
  35. Sholkovitz, E.R. and Szymcazk, R. (2000) The estuarine chemistry of rare earth elements: Comparison of he Amazon, Fly, Sepik and the Golf of Papua systems. Earth and Planetary Science Letters, v. 179, p. 299-309 https://doi.org/10.1016/S0012-821X(00)00112-6
  36. Transportation Research Board, National Cooperative Highway Research Program, Synthesis of Highway Practice #70 (Design of Sedimentation Basin) (1980) National Research Council, Washington, DC
  37. Wischmeier, W.H., Johnson, C.B. and Cross, B.V (1971) Predicting rainfall erosion losses from cropland East of the Rocky Mountains. USDA Agricultural Research Service, Agricultural Handbook, 537p
  38. Wischmeier, W.H. and Smith, D.D. (1965) A soil erodibility nomograph for farm and conservation sites. Journal of Soil and Water Conservation, v. 26(5), p. 189-193
  39. Yang, S.Y., Jung H.S., Choi, M.S. and Li, C.X. (2002) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth and Planetary Science Letters, v. 201, p. 407-419 https://doi.org/10.1016/S0012-821X(02)00715-X