• Title/Summary/Keyword: RTRL algorithm

Search Result 3, Processing Time 0.016 seconds

Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization (언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용)

  • Kwon Oh-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • Recurrent neural networks(RNNs) trained with gradient based such as real time recurrent learning(RTRL) has a drawback of slor convergence rate. This algorithm also needs the derivative calculation which is not trivialized in error back propagation process. In this paper a derivative free Kalman filter, so called the unscented Kalman filter(UKF), for training a fully connected RNN is presented in a state space formulation of the system. A derivative free Kalman filler learning algorithm makes the RNN have fast convergence speed and good tracking performance without the derivative computation. Through experiments of nonlinear channel equalization, performance of the RNNs with a derivative free Kalman filter teaming algorithm is evaluated.

Recurrent Neural Network Adaptive Equalizers Based on Data Communication

  • Jiang, Hongrui;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2003
  • In this paper, a decision feedback recurrent neural network equalizer and a modified real time recurrent learning algorithm are proposed, and an adaptive adjusting of the learning step is also brought forward. Then, a complex case is considered. A decision feedback complex recurrent neural network equalizer and a modified complex real time recurrent learning algorithm are proposed. Moreover, weights of decision feedback recurrent neural network equalizer under burst-interference conditions are analyzed, and two anti-burst-interference algorithms to prevent equalizer from out of working are presented, which are applied to both real and complex cases. The performance of the recurrent neural network equalizer is analyzed based on numerical results.

Nonlinear channel equalization using a decision feedback recurrent neural network (결정 궤환 재귀 신경망을 이용한 비선형 채널의 등화)

  • 옹성환;유철우;홍대식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.23-30
    • /
    • 1997
  • In this paper, a decision feedback recurrent neural equalization (DFRNE) scheme is proposed for adaptive equalization problems. The proposed equalizer models a nonlinear infinite impulse response (IIR) filter. The modified Real-Time recurrent Learning Algorithm (RTRL) is used to train the DFRNE. The DFRNE is applied to both linear channels with only intersymbol interference and nonlinear channels for digital video cassette recording (DVCR) system. And the performance of the DFRNE is compared to those of the conventional equalizaion schemes, such as a linear equalizer, a decision feedback equalizer, and neural equalizers based on multi-layer perceptron (MLP), in view of both bit error rate performance and mean squared error (MSE) convergence. It is shown that the DFRNE with a reasonable size not only gives improvement of compensating for the channel introduced distortions, but also makes the MSE converge fast and stable.

  • PDF