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Recurrent Neural Network Adaptive Equalizers Based on
Data Communication

Hongrui Jiang and Kyung Sup Kwak

Abstract: In this paper, a decision feedback recurrent neural net-
work equalizer and a modified real time recurrent learning al-
gorithm are proposed, and an adaptive adjusting of the learning
step is also brought forward. Then, a complex case is considered.
A decision feedback complex recurrent neural network equalizer
and a modified complex real time recurrent learning algorithm are
proposed. Moreover, weights of decision feedback recurrent neu-
ral network equalizer under burst-interference conditions are ana-
lyzed, and two anti-burst-interference algorithms to prevent equal-
izer from out of working are presented, which are applied to both
real and complex cases. The performance of the recurrent neural
network equalizer is analyzed based on numerical results.

Index Terms: Recurrent neural network, adaptive equalization, de-
cision feedback, burst-interference, RTRL algorithm, CRTRL al-
gorithm.,

I. INTRODUCTION

Channel equalization can be regarded as a mode classifica-
tion problem. Since neural networks have good mode classifi-
cation properties, different neural network structures are applied
to channel adaptive equalization [1]-[3] with the development of
neural networks technology. Various structures and algorithms
of equalizers possess their own advantages and shortcomings.
For example, provided enough freedom, the multilayer percep-
tron can be applied to arbitrary complicate non-linear channel
equalization. But in project realization, there is always a con-
tradiction between its properties and complexity of realization.
The larger the structure, the longer the time needed for comput-
ing, and the smailer the data transmitting rate. Recurrent neu-
ral network (RNN) has the properties of small size and good
performance, and it relieves the contradiction in the channel
equalization [3]. Because it is similar to an IIR filter, it can
get good equalization effects, or complete complicate non-linear
map with only a few nodes.

In real case, recurrent neural network equalizer applying
real time recurrent learning (RTRL) algorithm are presented in
{3], [4]; in complex case, complex recurrent neural network
equalizer (CRNNE) using complex real time recurrent learn-
ing (CRTRL) algorithm is first proposed in [5]. Up to now, no
one has considered the anti-burst-interference problem for re-
current neural network equalizer. The purpose of this paper is to
improve the performance of recurrent neural network equalizer
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Fig. 1. Channel equalizer model.

from all possible aspects.

The paper is organized as follows. Decision feedback recur-
rent neural network equalizer (DFRNNE) structure is given in
Section II. Then modified real time recurrent learning (modi-
fied RTRL) algorithm is proposed, and adaptive adjusting of the
learning step is also brought forward in Section III. Then, we
will study complex case. Model of decision feedback complex
recurrent neural network equalizer (DFCRNNE) is provided in
Section IV. Modified complex real time recurrent learning (mod-
ified CRTRL) algorithm is proposed in Section V. Later on, the
variance of weights for decision feedback recurrent neural net-
work equalizer is studied for solving burst-interference problem
in Section V1. Then two anti-burst-interference algorithms are
given, which are applied to both real and complex cases in Sec-
tion VII. Finally, conclusions are given in Section VIII.

II. DFRNNE STRUCTURES

The channel equalizer model is shown in Fig. 1 where
Sk, Nk, Tk, and §,_g4 represent signal, noise, input signal of
equalizer and estimate signal, respectively.

In this section, the following distortion channel models [6]
are used:

LCH : 1z = 0.3482s;, + 0.8704s;,_; +0.482s;,_5, (1)
NLCH : y;, = a3 + 0.2}, 2)

where linear distortion channel with severe ISI (LCH) and non-
linear distortion channel (NLCH) are investigated. In the fol-
lowing simulative experiments, s is a random sequence with
equal probability of -1 or +1 with unity power, and Gaussion
white noise is added to the equalizer’s reception end.

Fig. 2 is RNN structure with 3 nodes, where all neurons con-
nect with each other, each input will be imported into each neu-
ron, and each neuron output may be regarded as the external
output of the network. xy is the input signal of equalizer, and
W;; represents the connection weight which will be introduced
in the following.

Fig. 3 is the DFRNNE structure (DFRNNE). We define that n,
m, and [ are the numbers of inner nodes, the delaying inputs and
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Fig. 2. RNN Structure with 3nodes.

Fig. 3. Structure of DFRNNE.

the feedback delaying inputs of DFRNNE respectively. d, is the
training signal, e,, is the error of the nth neuron, X k—it1(l =
1,2,---,n) is the delaying input signal, y; is the output of the
ith(i = 1,2, - ,n) node, and §j_q—;(1 = 1,2,---,1) is the
feedback delayed input signal where d is the channel delay. In
training process (switch S points to 1), training signal is regarded
as the delaying input of each decision feedback signal so that
effective information can be fully used and false propagation
can be prevented. When signals propagate (switch S points to
2), equalizer’s decision output becomes the delaying feedback
input.
The weighted sum of the pth node’s inputs is

vp(t+1) =3 woii(t) + Y wpnr1@r_ipa(t)
zl=1 i=1 (3)

+ E wp,nﬁ-igkfdfivp - 17 27 e, My
i=1

where w,,; is the weight from the ith (i = 1,2,--- ,n) node to
the pth node, w,; is the weight from each delaying input signal
(j =n+1,--+,n+m) to the pth node, and wyy, is the weight
from each decision feedback delaying signal (h = n + m +
1,-+-,n+ m+1) to the pth node.

Let the output of the ith (i = 1,2, - - ,n) node

yl(t+1):f[v’t(t_'_l)]’Z:l?Za .1, (4)
where the active function

1 —exp(—2x)

@) = 1 + exp(—2x)

&)
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Then we get the decision output

8k—a = SGN(yn(t +1)). (6)

HI. LEARNING ALGORITHMS OF DFRNNE

A. Modified RTRL Algorithms

Real-time recurrent learning (RTRL) algorithm is applied to
RNNE. Here, modified real time recurrent learning (modified
RTRL) algorithm is proposed for DFRNNE.

dn(h =1,2,--- ,n) is the training signal, and the error of the
hth neuron is defined as

eh(t—{-l)=dh(t+1)—yh(t+1),h=1,2,~-~,n. @))

The networks instantaneous total error is given by

J(t+1)=%Ze,%(t+1). (8)
h=1

The objective of the algorithm updating the connecting
weight w;; is to minimize J(#+1).
Define the kronecker delta
i =
P )

1
Oip = { 0 i#p
and the derivative of the active function

, 4
I @ = o) T e (D

(10)

The sensitivity is defined as

PE(t+1) = f (vp(t+1)) | D wen (B)pl (D) +85p2i(t) | (1D)
h=1

where p = 1,2,---,n, and z;(t) represents the output of
DFRNNE inner nodes (j = 1,2,---,n), the external input
signal (j = n + 1,---,n + m) and feedback input signal
j=n+m+1,-- ,n+m+l).

wij(t + 1) =

w;z(t) + az en(t + 1);0?]»(t + 1) + wlw;; () — wii(t — 1)),

h=1

(12)
where « is the learning step of the adaptive equalizer. o >
0,:=1,2,---,n,5=12,--- ,;n,n+1,-- ,n+mmn+m+
1,--- ,n + m + . Moreover, momentum factor # (0 < u <

0.001) is introduced to help update the weights.
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Fig. 4. The RNNE learning curves with different o« (LCH, SNR=22dB).

B. Adaptive Adjusting of the Learning Step

The learning step o has a certain effect on the convergency
speed of algorithm. Here, we use the channel LCH which is pre-
sented in section II. Fig. 4 is RNNE’s learning curves with dif-
ferent o where MSE and SNR represent mean square error and
signal-to-noise ratio respectively. Here, SNR=22dB. As shown
in Fig. 4, within certain range of values, the convergency speed
of algorithm increases with the increase of «. For larger «, the
algorithm converges quickly, but is subject to vibration and in-
stability; For smaller ¢, the algorithm converges slowly, and is
subject to trapping into local minimization. So the selection of
o is very important. The methods of adaptive adjusting o are
proposed according to the above analysis. Its basic idea is to
continuously adjust o after each iteration, which possesses two
objectives: one is to let the algorithm skip out of the local min-
imization and speed up the convergence process, the other is to
try to avoid the instability of algorithm.

Firstly, define the system’s total error F,, which is equal to
ZJ(t+1). Use an exponential function to realize the adaptive
adjusting of «. This function regards E,, as an independent vari-
able.

Set
(13)

o = apexp(E,), 0.1 < ag < 1.5.

The algorithm will adaptively adjust o during the iteration
processes. If the total error is large, o will decrease; if the total
error is small, o will increase. The total error will become small
with increased iterations, and o will gradually hold a certain
level.

C. Simulation Study

In accordance with DFRNNE, the simulative experiments are
conducted for the comparison with the traditional RNNE under
the same condition. Here, we use the channels presented in sec-
tion IL.

C.1 Comparison of Learning Performance

In every experiment, initial weights w;;, initial sensitivity P;;
and initial output y; of each node are random numbers whose

RNNE

MSE(dB)
o

20F \J"‘f\ J

N\
251 /f\ “ ,\ A *
:: VVSQFRC‘LV J \ f \L’ W ]\f' \/\/\j

[Py E— R . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
lterations

Fig. 5. Learning curves(LCH).

MSE(dB)

. ’«
3 M,
::L \( /\I\‘ l,l/;-%FH E/WV ‘1]’[ \\/,«

-401

45 n s s ' L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

lterations

Fig. 6. Learning curves(LCH+NLCH).

absolute values are less than or equal to 103, The parameters
of traditional RNNE and DFRNNE are m = 2,n = 1, = 0.5
and m = 2,n = 1,I = 3,0 = 0.5. Therefore, two groups
of learning curves are obtained in accordance with two different
distortion channels respectively.

In Fig. 5, the distortion channel is LCH, SNR=16dB. In
Fig. 6, the distortion channel is LCH cascade-connected with
NLCH, SNR =18dB. According to Fig. 5, S-DFRNNE con-
verges at about -30dB, while RNNE at about -10dB with greater
vibration. According to Fig. 6, S-DFRNNE converges at about
-30dB, while RNNE doesn’t converge at all. In short, S-
DEFRNNE has better learning performance than the traditional
RNNE.

C.2 Comparison of Bit Error Rate(BER)

In order to research the BER performance of DFRNNE, two
groups of BER curves (Fig. 7 and 8) are obtained according to
the above distortion channels.

According to these curves, we note that DFRNNE has better
BER performance than RNNE. During the simulation process,
we find that, for the two given distortion channels, the BER of
RNNE always presents inconsistency and possesses certain vi-
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bration, and that even the increase of SNR deteriorates the BER
performances. The fault lies on applying RNNE to the channel
equalization, while DFRNNE makes up for the fault and its BER
possesses consistency.

IV. MODEL OF DFCRNNE

We design a better performing DFRNNE based on the real
case studied before. However, when a QAM signal with the
complicated channels is considered, neural network equalizers
based on real analysis have a large limitation. Some researchers
extend recurrent neural network equalizer based on RTRL algo-
rithm to complex recurrent neural network equalizer (CRNNE)
based on complex real-time recurrent learning (CRTRL) algo-
rithm [5] whose inputs, outputs, weights and active functions
are all complex.

Decision feedback complex recurrent neural network equal-
izer (DFCRNNE) is presented, and modified CRTRL algorithm,
which fits the structure, is deduced in the following. DFCRNNE
not only inherits the advantages of CRNNE on complex field,
but also skillfully puts the traditional decision feedback struc-
ture for linear channels equalization into RNN, and replaces de-
cision feedback signals with training signals in the learning pro-
cess. We will present the structure of DFCRNNE and modified
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E, D,

Fig. 9. The structure of DFCRNNE.

CTRL algorithm in the following.

Lower case (upper case) is used to represent real (complex) in
this paper. Structure of DFCRNNE is shown in Fig. 9. In Fig. 9,
we define that » is the inner nodes number of the DFCRNNE,
m the delaying input number of the equalizer, [ the feedback de-
laying input number of the equalizer, Xy_i+1(i = 1,2,--- ,m)
is the delaying input signal, Yi(k = 1,2,--- ,n) is the output
of the kth node, Dy, is the training signal of the kth node, E,, is
the error of the nth neuron, and S'k_dwt(t =1,2,---,1) is the
feedback input signal with delaying t. Modified CRTRL algo-
rithm is adopted for adjusting the equalizers weights. In training
process (switch S points to 1), training signal is regarded as the
delaying input of each decision feedback signal so that effective
information can be taken into full use and false propagation can
be prevented. In data transmission process (switch § points to
2), equalizer’s decision output becomes the delaying feedback
nput.

V. MODIFIED CRTRL ALGORITHM AND
SIMULATION

A. Modified CRTRL Algorithm

CRTRL algorithm is used for the training process in CRRNE
[5]. Here, modified CRTRL algorithm is proposed and used for
the training process in DFCRRNE.

Denote V}, as the weighted sum of the kth (k = 1,2,--- | n)
node’s inputs. W;; represents the weight from the jth (j =
1,2,- -+ ,n) node to the ith node, the weight from each delay-
ing input signal (j = n + 1,--- ,n + m) to the ith node, or
the weight from each feedback delaying signal (j = n +m +
1,--- ,n+m-+!) to the ith node. We set real part and imaginary
part of W as wg and wy. Weights, exterior inputs, feedback in-
puts, expected response and the weighted sum of the kth node’s
inputs are all complex.

Define the following activation function [4],

F(Z) = f(zr) + 3 f(21)- (14)
In our study, we select
_ 1—exp(~22)
f(z) = T oxp(=23)’ (15)

and the differential of f(z) is
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To calculate the steepest descent direction, we use the concept
of the gradient instead of the complex derivative. If cg and ¢;
are the unit vectors in the direction of zg and z; respectively,
we get

(16)

OF(Z OF(Z
V(Z)F(Z) = BZ(R )CR + ai] )CI (17
If Cg=1and C; (j = v/—1), then
V.F(Z) = OF(2) + 8F(Z)j. (18)

0z R oz I
The weighted sum of the kth (k = 1,2,--- ,n) node’s is

Vilt+1 =Y Wi Ve[t + Y Weng s Xoopealt]
f=1 F=1
!
+ Z Wi ntm+fSk—d—f-
f=1

19)

The output of the kth node is

Yi(t +1) = F(Vilk +1]) = f(vrk[t + 1)) + j f(vi[t + 1]).
(20)
Define F(t) as the complex error of the kthe neural node.

Ek(t) = Dk(t> — Yk(t) = eRk[t] —I—je[k[t]. (21)
The networks instantaneous total error is

Jit+1] = % SO Bt + D). 22)
k=1
The objective of the algorithm updating the connecting
weights Wi;(i = 1,2,--- ,n,j =1,2,--- ,n,n+1,--- ;n+
m,n+m+1,--- ,n+m+1)is to minimize J[t+1] . We intro-
duce the sensitivity terms Pgrp, Prr, Prg, and Py [5] defined
by

. Oyrk  Oyrk
Pepi;  Pri } Owrij  Owrij
i i | [t] = de ij 6. (23)
[ Pl Phi g f aaylk gync 14
WRij Wrij

Using (18), we compute the gradient of J[¢] with respect to
Wij'

aJlt oJ[t

1, 001

w; t| =
v Y J[] 8wRij 871]]1]

(24)

Then, differentiating (22), we get

oJt a ) 8
U. Z—Zem 0 YRkt Zelk yrxlt o @s)

awRZ]

)

e
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Fig. 10. Comparison of MSE curves of CRNNE and DFCRNNE under
linear channel.

n

Z ay"’“ Ourelt] 5= i Ounelt] )

b
k= Wrij 4o Owry;

8w11]

In order to find a recursive relation for the calculation of the
terms Prg, Pry, Prg, and Pyy, we differentiate (20) and get

0 t+1 / Ovgglt + 1
T Lt O R Lt ey
8wRij ow WRij
Using weight W;;, node output Y;(f = 1,--- ,n), delaying

input Xx_s11(f =1,--- ,m) and real part and imaginary part
of feedback delaying input Sx_q—¢(f = 1,---,l) to rewrite
(19), we get

T

vrelt + 1] = Z(kafny[t] — wirsyrglt])
f=1

+ > WRk TR A f1[t] — Wikt s LR s [t]
=1
t
+ Z(ka,n+m+f§R,k-d—f = Wrkntmtf81,k—d—f)-
=1
(28)

After we compute the derivative of (28) with respect to wg;;,
in accordance with (23) and (27), we can get

Phaij(t+1) = f (rslt + 1))
- p p (29
Z(kaP[t]PRRij t] - wIkPPIRij [t]) + Ounzrs(t] |+
p=1
where : = 1,2,--- ,n,k = 1,2,--- ,n,j =1,2,--- ,n,n+
1, ,n+mn+m+1l,.--- ,n+m+1, and

1 i=k
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and Zg;[t] may represent the real part of DFCRNNE’s inner
node output ( = 1,2,--- ,n), input signat (j =n+1,--- ,n+
m), or feedback input signal (j = n+m+1,--- ,n+m+!). Ina
similar manner Z;;{t], in the following represents the imaginary
part.

We may derive recursive equations for Pgry, Pig, and Pyy in
a similar fashion. We group these recursive equations together
to get the following recursive matrix equations for the sensitivity
terms at the bottom of this page.

Finally, we get the weight update equation at the bottom of
next page.

where « is the learning step of the adaptive process.
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B. Simulation

To testify the equalization performance of DFCRNNE, we
compare DFCRNNE with the traditional CRNNE [5] under the
same conditions. For CRNNE, we set n = 3, m = 1, and for
DFCRNNE, we set n = 3, m = 1,[ = 1, and 2 respectively.

The input sequence {S} is complex 4-QAM whose real and
imaginary parts are assumed the values +0.6 or -0.6, and 15dB
for SNR. In simulation, we first train 4000 times, then adopt de-
cision guidance method to test equalization performance in pro-
cess of data transmission. Small random complex values with
|W;;(0)] < 107 are used to initialize the weights. Initial val-

Plri; Phr; j| [ £ (urk) 0 ] - [ WRkp —WIk J [ Pt... PE.. zr; —zlj
i ) t] = , x D P RRij RIij t_‘__ai J AR B
{ PIkRi]‘ PIinj 1 0 [ (uik) pz:dl Wikp  WRkp P}’Rij Pr,. [t]+0ik qy oz [t]
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ues of all parts of sensitivity term P are set to 0, and the learning
step is fixed to o = 0.01.

Case (1): We use the following linear channel, and channel
output is

Xi = Sk + (0.2501 + i*1.0246) Sk,
+ (—0.0686 + i*0.8237)Sk_2
+ (—0.6819) + i*0.0840)Sk_3 + Ni.

(33)

where noise Ny is complex white Gaussian noise whose
imaginary part is the Hilbert transformation of real part.

Comparison of mean square error (MSE) curves of CRNNE
and DFCRNNE under linear channel is given in Fig. 10 where
DFCRNNEI1 and DFCRNNE?2 represent DFCRNNE with 1=1
and 2 respectively.

From Fig. 10, we learn that convergence performance of
DFCRNNE? is better than that of DFRNNE]1, and convergence
performance of DFCRNNE is better than that of CRNNE.

Signal constellation plots before and after equalization under
linear channel are shown in Fig. 11. In Fig. 11(b), there are
some spots near the decision boundary. From Fig. 11(c) and
Fig. 11(d), we see that DFCRNNE1 and DFCRNNE?2 have bet-
ter pattern classification characters compared to CRNNE, and
no spots occur near the decision boundary, and DFCRNNE2 has
better conglomerate performance than DFCRNNE].

Case (2): We simulate a highly nonlinear communication
channel. The transmitted signals {Sy} are first passed through
the linear channel in case 1 and then raised to higher powers.
The output of channel can be expressed as:

5
X = (H*S)k + le((.H*S)k)z + Ng,

(34)

i=2
where H is the impulse response of the linear channel in case 1
and * represents convolution. The coefficient [;(i = 2,--- | 5)

determines the amount of nonlinear harmonics added to the lin-
ear response. In the example, the values of the coefficients /;
are: lp = 0.15,13 = 0.10,14 = 0.05, and I5 = 0.10.

Comparison of mean square error (MSE) curves of
DFCRNNE and CRNNE under non-linear channel is given
in Fig. 12. From Fig. 12, we see that both DFCRNNEI1
and DFCRNNE2 have better convergence performances than
CRNNE under non-linear channel.

Signal constellation plots before and after equalization under
non-linear channel are shown in Fig. 13. There are many spots
near the decision boundary for CRNNE in Fig. 13(b). It means
CRNNE cannot get accurate estimation. From Fig. 13(c), we
see DFCRNNE] has better pattern classification capability than
CRNNE, but there are still some spots near the decision bound-
ary. From Fig. 13(d), we see DFCRNNE2 has the best conglom-
erate performance, and the data can be decided more accurately.

13

MSE(dB)
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Fig. 12. Comparison of MSE curves of CRNNE and DFCRNNE under
non-linear channel. )

VI. ANALYSIS OF DFRNNE

With the development of neural networks technology, neural
network adaptive equalization is extensively used to HF chan-
nel communications and its excellent effects are obtained. From
above, we know DFRNNE has a simple structure, good stability
and convergence, and low bit error rate [6]. Generally, channels’
signal-to-noise ratio (SNR) is between 10dB and 20dB. How-
ever, since there exists all kinds of effects of uncertain factors
such as burst-interference, it is fairly possible for channels to
have SNR less than 10dB [7]. Simulation results have shown
that when channels are affected by burst-interference, which
makes SNR keep lower than 10dB for a long time, equalization
performances of DFRNNE become bad or even inefficient. It is
very possible to lose tracking ability and unable to recover the
normal work when channels regain the normal condition, which
will lead to interruption of communication under serious condi-
tions. The whole system must be restarted at that time, which
will affect the efficiency of communication. Therefore, it is nec-
essary to improve performances of DFRNNE and enable it to
adaptively track the dynamic variation of channels.

Based on the structure of DFRNNE we use, the channels pre-
sented in the Section II and LCH is cascade-connected with
NLCH. SNR is initially set to be 16dB, and the initial values
may be referred to Section III. When DFRNNE is used in equal-
ization without burst-interference, it can always come to con-
vergence condition. After training process ends, data transmis-
sion process subsequently begins. The variability of equalizer’s
weight values and mean-square error (MSE) are explored as fol-
lows.

We assume, without loss of generality, input number m=1,
neuron number n=2, and feedback input number /=1. In fact,
this is the structure of S-DFRNNE with 2 nodes, which is shown

Wij = Wij + anij J(t) = Wz](t) —+ « Z
k=1

k k
PRRij PI}cIij (32)

([eRk eik][ Pfpy; Pl ] “ }(t))‘
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DFCRNNET1 after equalization, (d) DFCRNNE2 after equalization.
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Fig. 14. The structure of DFRNNE with 2 nodes.

in Fig. 14. From Fig. 14, we consider eight weights: Wj; (nodel
— nodel), Wiy (node2 — nodel), Wi (input — nodel), Wiy
(feedback — input nodel), Wsy (nodel — node2), W2 (node?2
— node2), Was (input — node2), and Wy (feedback input —
node2). Variation curves of eight weight values and MSE in

normal channel are given in Fig. 15. According to Fig. 15(a),
we know that every weight value curve basically keeps near a
certain value to slightly fluctuate in the whole process of data
transmission. Some of weights coincide: from up to down, two
weights Wi and Wags overlap, four weights W11, Wia, Was,
and Ws overlap, and two weights W14 and Way4 overlap. MSE
possesses very low values according to Fig. 15(b), and its bit
error rate keeps at a very low level.

In data transmission process, when channel meets burst-
interference during the period from the 300" iteration to the
600%" iteration and SNR abruptly decreases by 3dB, DFRNNE
cannot recover normal work condition after the channel resumes
the normal condition. Communication must be interrupted so
that the system must be restarted. In the burst-interference con-
dition that SNR=3dB and interference duration is 300 itera-
tions, variation curves of weight values and MSE with burst-
interference are shown in Fig. 16.

From Fig. 16(a), it is known that every weight value curve
declines very much when there is burst-interference, then con-
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Fig. 16. Variation curves with burst-interference: (a) Weight values, (b) MSE.

verges to a certain value. From Fig. 16 (b), we know that MSE
approximately converges to O after the equalizer has iterated 800
times. At that time, bit error rate is up to 0.4350, and equalizer
keeps convergence condition. In fact, it is false convergence be-
cause the bit error rate is so large. Weight values deviate from
the stable value with two conditions: divergence and false con-
vergence. The latter often occurs in simulation. The fact that the
weight values converge to a certain value must lead MSE to con-
verge to 0, which may be determined by algorithm. At that time,
equalizer loses efficiency, and the uncertainty of estimated bits
become very large such that the bit error rate rapidly increases.
wf’ft when t >ty

Frlwiit) = { wy;(t) when t <ty ’ G

VIL. ANTI-BURST-INTERFERENCE ALGORITHMS

From the previous analysis, the main reason of the failure for
S-DFRNNE is that weight w;;(i =1,--- ;n;j=1,--- ,n,n+
1,---,n+mn+m+1, - ,n+m+1) diverges or falsely
converges, causing random decision results. So we need control
weight w;; . Since w;; varies with time, set w;; as w;;(t) at
time t. Define ¢, as certain time after equalizer converges. It is
obvious that wij(t,,) is near the stable value. Assume that the
stable value is wfjpt with wioft = w;;(t,) . Define the following
control functions:

Where o1 and ap are some positive real numbers. Two mod-
ified algorithms are presented in the following.
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A. Anti-burst-interference Algorithm 1

RTRL algorithm can still be used in the process of training.
Then, setw;; = Fi[w;;(t)] . The evidences of the theory are that
every weight value curve basically keeps near a certain value
to slightly fluctuate in the whole process of data transmission
when there is no burst-interference. Therefore, good equaliza-
tion performances can be obtained by the stable value w;; in the
process of data transmission. The MSE of modified algorithm 1
with burst-interference (300 iterations) is given in Fig. 17. After
channel recovers normal condition, the MSE is very small, and
bit error rate is 0.008. Here, the MSE uses the output values (be-
fore decision and after decision) to compare. In this situation,
capabilities of equalizer are good, and the equalizer is efficient
to prevent false convergence conditions. However, because the
fact that the weights keep invariant decreases the sensitivity to
channel, the second algorithm is introduced.

B. Anti-burst-interference Algorithm 2

The second algorithm is given as follows. Again apply RTRL
algorithm in the process of training, then set w;; = Fplw;;(t)] .
The second algorithm makes all kinds of weights be controlled
within the effective range of its stable value. Suitable selection
of oy and o not only can prevent the weights of equalizer from
deviating the stable value, but also unrestricts the equalizer in
real channels in all cases, which amplifies ability and flexibility
of DFRNNE.

When there is burst-interference (300 iterations), the varia-
tion curves of weights and MSE of the second modified algo-
rithm are given in Fig. 18. When channel is normal, perfor-
mance of DFRNNE does not change. When the channel meets
burst-interference, MSE changes rapidly and bit error rate in-
creases. When the channel becomes normal, equalizer recovers
good working conditions after the transmission time of 50 iter-

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.5, NO.1, MARCH 2003

ations. From Fig. 18 (a), we know that every weight drives to
a stable value, and some curves are slightly separated. From
Fig. 18 (b), we know that MSE is always controlled within a
very small range all the time. The bit error rate is 0.00001. We
notice that &1 and oz can be generally set as 0.2 ~ 0.3 through
a great deal of experiments.

In conclusion, the anti-burst-interference algorithms can ef-
fectively prevent false convergence when channel meets burst-
interference, and make the equalizer automatically recover nor-
mal working conditions and continue to work.

C. Applications on Complex Recurrent Neural Network Adap-
tive Equalization

Two anti-burst-interference algorithms based on S-DFRNNE
are proposed above. Theoretically, the two algorithms can be
applied to all structures of recurrent neural network equaliza-
tion. Here, we will verify them in the complex case. DFCRNNE
are adopted. In the process of data transmission, when channel
meets burst-interference during the time from the 300th itera-
tion to 750th iteration, SNR abruptly decreases to 3dB. After
the 750th iteration, channel recovers 1o normal condition.

MSE and signal constellation plots without anti-burst-
interference measure are shown in Fig. 19. Then, when there
is burst-interference, MSE and signal constellation plots with
anti-burst-interference algorithms 1 and 2 are shown in Fig. 20
and Fig. 21 respectively.

From Fig. 19, we know when no anti-burst-interference mea-
sure is present, MSE approximately keeps zero after the 1000th
iteration. However, signal conglomerate performance is bad, af-
ter equalization, so the signal cannot correctly be decided. It can
be concluded that convergence at this time is false convergence.
From Fig. 20 and Fig. 21, we know, with anti-burst-interference
measure, MSE nearly converges to 0 after the 750th iteration,
and signal’s classification capability and conglomerate perfor-
mance are better so that the signal can correctly be decided after
equalization. According to MSE and signal constellation plots,
it is obvious that system performances are improved with anti-
burst-interference measure.

VIII. CONCLUSION

RNNE is very sensitive to the setting of various initial val-
ues. However, DFRNNE is not sensitive to various initial values,
and adaptive adjusting of the learning step is brought forward in
DFRNNE. It adaptive training, it is only needed to set any initial
value as smaller random data and properly select adaptive step,
which will gain better equalization effects that are sufficiently
supported by the consistency of the learning and BER curves.
DFRNNE has better and more stable equalization performance
than RNNE.

DFCRNNE has better equalization properties than CRNNE.
DFCRNNE classifies system patterns in the field of complex,
which not only effectively compensates a variety of complicated

opt
w;?

Falw;(t)] = { ij

[when t >ty and (w;(t) — wf}’t < =0, or wi(t) —w
wij(t)when t <ty or — oy < wy(t) — wit

opt

i5 > OLQ)]

o (36)
szt < a2]
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Fig. 19. Plots without anti-burst-interference measure: (a) MSE, (b) signal constellation.

distortion channels, but also exerts the predominance of the de-
cision feedback structures that can refrain from ISI. It possesses
better equalization performance than CRNNE.

Moreover, the anti-burst-interference algorithms can effec-
tively prevent false convergence when channel meets burst-
interference, and make equalizer automatically recover normal
working conditions and continue to work. Thereby, the algo-
rithms amplify the compatibility of system. Furthermore, it is
fit for both real and complex case. We are currently investigat-
ing the modified algorithms to be used with other neural network
equalizers.
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