• Title/Summary/Keyword: RTM(Resin Transfer Molding)

Search Result 68, Processing Time 0.025 seconds

Impact Properties of S-2 Glass Fiber Composites with Multi-axial Structure (다축 구조 S-2 유리섬유 복합재의 충격 특성)

  • Song, S.W.;Lee, C.H.;Byun, J.H.;Hwang, B.S.;Um, M.K.;Lee, S.K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.71-75
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process have been utilized for providing through-thickness reinforcements. 2D preforms were stacked with S-2 glass plain weave and S-2 glass MWK (Multi-axial Warp Knit) L type. 3D preforms were fabricated using the stitching process. All composite samples were fabricated by RTM (Resin Transfer Molding) process. To examine the damage resistance performance the low speed drop weight impact test has been carried out. For the assessment of damage after the impact loading, specimens were examined by scanning image. CAI (Compressive After Impact) tests were also conducted to evaluate residual compressive strength. Compared with 2D composites, the damage area of 3D composites was reduced by 20-30% and the CAI strength showed 5-10% improvement.

  • PDF

Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method (셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식)

  • 이원오;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

State-of-the-art of the multi-scale analysis of advanced composite materials by homogenization method (일본내 연구동향 (6편중 제4편))

  • Takano, Naoki
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.44-52
    • /
    • 2002
  • To study numerically the mechanical behaviors of advanced composite materials considering the microscopic phenomena as well as the macroscopic properties and behaviors, a multi-scale modeling and analysis by the mathematical homogenization method with the help of the finite element method(FEM) are reviewed. The hierarchical modeling strategy and the formulation are briefly described first to give some idea of the multi-scale framework. The latter half of this article focuses on the verification of the multi-scale analysis by the homogenization method in its applications to real advanced materials. The first example is the verification of the predicted macroscopic(homogenized) properties based on the microstructure of porous ceramics. In spite of the complexity of the random microstructure, the error between the predicted and the measured values was only 1%. Next, two applications to the process simulation of fiber reinforced polymer matrix composites are presented. The permeability characteristics are evaluated for sheared weave fabrics for resin transfer molding(RTM) simulation, and the thermoforming of FRTP sheet is analyzed considering the large deformation of the knit structure during the deep-draw forming was verified by comparison with the experimental results.

Experimental and Numerical Studies on the Flow Characteristics in Resin Transfer Molding Process (수지이동 성형공정의 유동특성에 관한 실험 및 수치모사 연구)

  • 이미혜
    • The Korean Journal of Rheology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1995
  • 실제 복합재료 제조공정에 널리 이용되는 등방성 탄소섬유직조와 에폭시수지에 대 해서 수지의 유동을 일방향으로 근사하여 비정상상태 투과계수와 모세관압을 측정하는 실험 을 수행하였고 적층된 섬유직조의 기공율, 금형 주입압력 그리고 섬유직조의 적층수에 따른 수지유동특성을 분석하였다. 또한 금형 충전과정에 대한 유동가시화 실험을 수행하여 유동 선단과 충전시간을 측정하였다. 전체 조업압력에 미치는 모세관압의 영향을 규명하기 위해 일정 유입압력에 따른 금형충전과정에 대하여 유한요소/관할부피 방법을 이용한 수치모사를 수행하였다. 함침공정의 수지유동에서 비정상상태 투과계수는 섬유직조의 기공율에 따라 급 격히 증가하였고 에폭시수의 표면장력에 기인한 모세관압은 기공율 감소에 따라 급격히 증 가하였다. 동일한 기공율에서 섬유직조의 적층수가 증가함에 따라 투과계수와 모세관압은 모두 증가하는 경향을 보였다. 또한실험에서 측정한 모세관압을 고려하여 유동선단과 금형 충전시간을 수치모사방법으로 예측ㄷ한 결과는 유동가시화 실험에의한 결과와 잘 일치함을 보였다. 이결과로부터 낮은 압력에서 조업하는 RTM공정에서 모세관압효과는 유동선단과 금형 충전시간을 예측하는데 기여함을 알수 있다.

  • PDF

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue

  • Sakin, Raif
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1531-1548
    • /
    • 2015
  • The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.

Strength Assessment of 8m-class High-Speed Planing Leisure Boat (8m급 고속 활주선형 레저보트의 구조강도 평가)

  • Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.418-423
    • /
    • 2018
  • Recently, research and development of high-value leisure vessels has been carried out in Korea to revitalize the marine leisure industry and tap into the global maritime leisure market. FRP composite materials, which have excellent physical properties and are available for the manufacture of light hulls, are used widely. One of the most important design technologies is to secure structural safety of leisure vessels made from FRP composite materials. In this study, the structural strength was assessed for the design of an 8-meter high-speed planing leisure boat made from FRP composite materials. The design loads to verify the structural safety were calculated according to the rules for the classification of high speed light craft (KR, 2015), and structural analysis was conducted using a finite element model composed of an isotropic shell element, which has equivalent bending rigidity with the FRP sandwich panel. The analysis results were compared with the results of the strength test for fabricated specimens, and all internal structural components are sufficiently satisfied with the structural strength.

Study on design of the composite torque link for a landing gear system of a helicopter (헬리콥터 착륙장치를 위한 복합재 토크링크의 설계에 대한 연구)

  • Kim, Jin-Bong;Um, Moon-Kwang;Lee, Sang-Yong;Kim, Tae-Uk;Shin, Jeong-Woo
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 2009
  • In this paper, we propose the design method for the composite torque link of a landing gear for a helicopter. The composite torque link has to be light weighted and very stiff to keep the shock absorber in the landing gear of helicopter. The configuration and structural shape has to be designed in consideration of the RTM (Resin Transfer Molding) manufacturing process which is adopted to minimize the manufacturing cost. The mechanical properties are obtained through the coupon tests with the specimens made by the same manufacturing process for the composite structure. The optimal design process was performed through iterative modifications of the models which were verified by stress analysis using FEM. The composite torque link has lug-shaped parts and is very thick, so 3D Layered solid elements of ABAQUS were used to get the stress field including the stress components in thickness direction and non-linear static analysis using contact B.C. of rigid-deform condition was used to get the optimal design.

A study on the way to improve strength of LTV's FRP structures by optimizing laminated structure (전술차량 FRP 구조물 적층 구조 최적화를 통한 강도개선 방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won;Kim, Sung-Gon;Kang, Tae-Woo;Shin, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.468-476
    • /
    • 2019
  • This paper presents the means of improving the strength of LTV's FRP structure for resolve and prevent quality problems. LTV secures enough kerb weight by applying FRP materials at hood and rear van assembly. However, because of FRP's inherent limitations, many initial quality problems such as crack at connections have occurred. Moreover, hood assy' is concerned about fall of endurance, because hood assy' have operated in abnormal condition. Therefore, this study executes lamination structure optimizations of FRP structure for improving bending strength. As a results, hood and rear van's bending strength at connections is improved 8.1 times and 1.5 times, respectively. Also hood assy's plate secures endurance life and improve 1.7 times of critical load about abnormal operating conditions through 1.4 times improvement of bending strength.