Numerical study on turbulent and mean structures of a turbulent boundary layer with longitudinal and spanwise pressure gradient is carried out by using Reynolds-stress-model (RSM). The existence of pressure gradient in a turbulent boundary layer causes the skewing or divergence of rates of strain, which contributes to production of turbulent kinetic energy. Also, this augmentation of production due to extra rates of strain can increase the turbulent mixing and cause the anisotropy of turbulent intensities in the outer layer. This paper uses the Reynolds Stress Model to capture anisotropy of turbulent structures effectively and is devoted to compare the results computed by using RSM and the standard k-.epsilon. model with experimental data. It is concluded that the RSM can produce the more accurate predictions for capturing the anisotropy of turbulent structure than the standard k-.epsilon. model.
Numerical simulation is performed for stagnating turbulent flows of impinging and countercurrent jets by the Reynolds stress model(RSM). Results are compared with those of the ${\kappa}-{\varepsilon}$ model and available data to assess the flow characteristics and turbulence modes. Three variants of the RSM tested are those of Gibson and Launder(GL), Craft and Launder(GL-CL) and Speziale, Sarkar and Gatski(SSG). As well known, the ${\kappa}-{\varepsilon}$ model overestimates turbulent kinetic energy near the wall significantly. Although the RSM is superior to the ${\kappa}-{\varepsilon}$ model, it shows considerable difference according to how the redistributive pressure-strain term is modeled. Results of the RSM for countercurrent jets are improved with the modified coefficients for the dissipation rate, $C_{{\varepsilon}1}\;and\;C_{{\varepsilon}2}$ suggested by Champion and Libby. The performance of the three variants of the RSM model for stagnating flows are assessed.
3개의 난류모델과 3개의 연소모델로 구성된 9개의 모델조합을 이용하여 난류 부분예혼합 제트화염 구조에 대한 수치적 예측성능을 검토하였다. 이용된 난류모델은 표준 ${\kappa}-{\varepsilon}$ 모델(SKE), Realizable ${\kappa}-{\varepsilon}$ 모델(RKE) 및 Reynolds 응력모델(RSM)이며 연소모델들은 Eddy Dissipation Concept 모델(EDC), Steady Laminar Flamelet 모델(SLF)와 Unsteady Laminar Flamelet 모델(ULF)이다. 9개 모델조합의 예측성능을 평가하기 위하여 실험결과가 알려진 Sandia D 화염인 난류 부분예혼합 제트화염을 대상으로 수치계산을 수행하였다. 얻어진 결과로서, 화염길이의 예측은 RSM > SKE > RKE순으로 길게 예측하였으며, RKE 난류모델은 화염길이를 너무 과소 예측하는 것을 확인하였다. RSM + SLF과 RSM + ULF의 조합은 화염길이는 비교적 잘 예측하였지만 하류에서의 화염온도를 과대 예측하였다. 반면에 SKE와 연소모델의 조합에서 SLF 또는 ULF 조합은 화염길이 뿐만 아니라 하류에서의 화염온도도 비교적 잘 예측하였는 것을 확인하였다. 반경방향 화염온도 및 화학종 농도분포를 비교해 본 결과 SKE와 연소모델의 조합이 가장 예측성능이 뛰어났으며 SKE + ULF의 조합이 가장 우수한 예측성능을 갖는 것을 확인하였다.
The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.
The effect of curvature, rotation, variable cross-section can make very complex flow pattern in turbo-machinery such as Pumps, compressors, turbines, In this study of turbulent flow characteristics rotating $90^{\circ}$ curved duct under a Plane rate of strain condition is computationally analyzed. The objective of this study is to understand the complex turbulent flow phenomena in turbo-machinery passage by analyzing the modeled rotating $90^{\circ}$ curved duct flow. RSM(Reynolds Stress Model) was employed for the turbulence modeling of Reynolds stress in momentum equations proposed by Shin(1995). The three dimensional computational code which adopts RSM for trubulence modeling was newly developed for the generalized curvilinear coordinate.
In this study, the characteristics of the three-dimensional turbulent flow in a rotating square sectioned $90^{\circ}$ bend were investigated by numerical simulation and experiment. In the experimental study, the characteristics of a developing turbulent flow are measured using hot-wire anemometer to seize the rotational effects on the flow characteristics and to compare the results of computational simulation with Reynolds stress model. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.
A numerical study was made to choose the better turbulence model for the flow in the discharge flow path from a diffuser to a wall. In this study standard $\kappa-\epsilon$ model(SKE), RNG $\kappa-\epsilon$ model(RNG), and Reynolds stress model(RSM) were applied. In case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG have a tendency to be near to those by SKE at small ratio(below about 0.35) of $h/D_o$, but to those by RSM at large ratio(above about 0.35). At large ratio RNG begins to enlarge the effects of rapid strain and streamline curvature. RNG & RSM are recommended as the appropriate turbulence models for this case. But it is noticeable that the velocity gradient pattern in RNG is same as in SKE, and also that the total pressure distribution in RNG is same as in RSM only at swirling flow area, same as in SKE only at main flow area.
Wind tunnel pressure measurements and numerical simulations based on the Reynolds Stress Model (RSM) are compared with full and model scale data in the flow area of impingement, separation and wake for $60^{\circ}$ and $90^{\circ}$ wind azimuth angles. The phase averaged fluctuating pressures simulated by the RSM model are combined with modelling of the small scale, random pressure field to produce the total, instantaneous pressures. Time averaged, rsm and peak pressure coefficients are consequently calculated. This numerical approach predicts slightly better the pressure field on the roof of the TTU (Texas Tech University) building when compared to the wind tunnel experimental results. However, it shows a deviation from both experimental data sets in the impingement and wake regions. The limitations of the RSM model in resolving the intermittent flow field associated with the corner vortex formation are discussed. Also, correlations between the largest roof suctions and the corner vortex "switching phenomena" are observed. It is inferred that the intermittency and short duration of this vortex switching might be related to both the wind tunnel and numerical simulation under-prediction of the peak roof suctions for oblique wind directions.
Lee, In-Sub;Ryou, Hong-Sun;Lee, Seong-Hyuk;Chae, Soo
Journal of Mechanical Science and Technology
/
제14권1호
/
pp.93-102
/
2000
The objective of the present study is to investigate the pressure-strain correlation terms of the Reynolds stress models for the three dimensional turbulent boundary layer in a $30^{\circ}$ bend tunnel. The numerical results obtained by models of Launder, Reece and Rodi (LRR) , Fu and Speziale, Sarkar and Gatski (SSG) for the pressure-strain correlation terms are compared against experimental data and the calculated results from the standard k-${\varepsilon}$ model. The governing equations are discretized by the finite volume method and SIMPLE algorithm is used to calculate the pressure field. The results show that the models of LRR and SSG predict the anisotropy of turbulent structure better than the standard k-${\varepsilon}$ model. Also, the results obtained from the LRR and SSG models are in better agreement with the experimental data than those of the Fu and standard k-${\varepsilon}$ models with regard to turbulent normal stresses. Nevertheless, LRR and SSG models do not effectively predict pressure-strain redistribution terms in the inner layer because the pressure-strain terms are based on the locally homogeneous approximation. Therefore, to give better predictions of the pressure-strain terms, non-local effects should be considered.
Numerical simulations were carried out using standard Reynolds stress turbulence model(LRR model) and modified RSM(Janicka model ) to validate these models in combustion flow fields. Two flames were selected for use as a benchmark data for model testing. One is a conventional jet diffusion flame that has the effect of suppression of turbulence by combustion. The other is a triple jet diffusion flame that designed to give high turbulence to the periphery of the flame and to remove the low Reynolds-number flow fields. As a result, it was found that the modification of standard RSM model is indispensable in the modelling of flames with low turbulence region. And it is also necessary to improve the existing modified models for the universal use.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.