• Title/Summary/Keyword: RS code

Search Result 165, Processing Time 0.023 seconds

Performance Evaluation of LDPC-LDPC Product Code for next Magnetic Recording Channel (차세대 자기기록 채널을 위한 LDPC-LDPC 곱 부호의 성능 평가)

  • Park, Donghyuk;Lee, Jaejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.3-8
    • /
    • 2012
  • Two-dimensional product code has been studied for correcting burst errors on the storage systems. An RS-LDPC product code consists of an RS code in horizontal direction and an LDPC code in vertical direction. First, we detect the position of burst errors by using RS code, then LDPC code corrects the errors by using the burst error positions. In storage system, long burst errors are occurred by various reason. So, we need a strong code for correcting the long burst errors. RS-LDPC product code is good for long burst errors. However, as the storage density grows the length of the burst errors will be longer. Thus, we propose an LDPC-LDPC product code, it is strong for correcting the very long burst errors. Also, the proposed LDPC-LDPC product code performs better than RS-LDPC product code when the random errors are occurred, because a row direction LDPC code performs better than row direction RS code.

Performance Analysis of RS, Turbo and LDPC Code in the Binary Symmetric Erasure Channel (이진 대칭 소실 채널에서 RS, 터보 및 저밀도 패리티 검사 부호의 성능 분석)

  • Lim, Hyung-Taek;Park, Myung-Jong;Kang, Seog-Geun;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.219-228
    • /
    • 2010
  • In this paper, performance of RS (Reed-Solomon), turbo and LDPC (low density parity check) code in the binary symmetric erasure channel is investigated. When the average erasure length is reduced, the frequency of short erasures is increased. The RS code shows serious performance degradation in such an environment since decoding is carried out symbol-by-symbol. As the erasure length is increased, however, the RS code shows much improved en-or performance. On the other hand, the message and corresponding parity symbols of the turbo code can be erased at the same time for the long erasures. Accordingly, iterative decoding of the turbo code can not improve error performance any more for such a long erasure. The LDPC code shows little difference in error performance with respect to the variation of the average erasure length due to the virtual interleaving effect. As a result, the LDPC code has much better erasure decoding performance than the RS and turbo code.

Performance Analysis of Telemetering Method using Delayed Frame Time Diversity (DFTD) and Reed-Solomon Code (지연프레임 시간다이버시티와 RS 코드를 사용한 원격측정방식의 성능분석)

  • Koh, Kwang-Ryul;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.503-511
    • /
    • 2012
  • In this paper, the performance analysis of telemetering method using delayed frame time diversity (DFTD) as the outer code and Reed-Solomon (RS) code as the inner code is described. DFTD is used to transmit a real-time frame together with a time-delayed frame which was saved in the memory during a defined period. The RS code as a kind of FEC (forward error correction) is serially concatenated with DFTD. This method was applied to the design of telemetry units that have been used for flight tests in a communication environment with deep fading. The data of the flight test for four cases with no applied code, with DFTD only, with the RS code only, and with both DFTD and the RS code are used to analyze the performance. The simulation for time-delay suggests the possibility that all frame errors can be removed. And the results of 12 flight tests show the performance superiority of this new method to compare with the RS code only.

A Study on a concatenated RS code and Turbo code for OFDM system over burst noise channel

  • Choi Sang Min;Moon Byung Hyun;Park Jong Soo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.649-652
    • /
    • 2004
  • In this paper, a concatenated RS and Turbo code is proposed for OFDM system over burst error channel. The concatenated code used in this study is a RS(255,2D2) code and a rate 1/2 turbo code. The turbo code uses 2 recursive systematic convolutional (RSC) code as the constituent codes and the parity bit are punctured to get the desired code rate. It is shown by simulation that the conventional OFDM system fails when there exists burst noise. The concatenated RS and turbo code obtains at least 5dB gain over the turbo code at the bit error probability of $10^{-3}$.

  • PDF

The Concatenated Coding Scheme for OFDM system over burst noise channel

  • Byung-Hyun, Moon;Sang-Min, Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2004
  • In this paper, a concatenated RS and Turbo code is proposed for OFDM system over burst error channel. The concatenated code used in this study is a RS(255,202) code and a rate 1/2 turbo code. The turbo code uses 2 recursive systematic convolutional (RSC) code as the constituent codes and the parity bit are punctured to get the desired code rate. It is shown by simulation that the conventional OFDM system fails when there exists burst noise. The concatenated RS and turbo code obtains at least 5dB gain over the turbo code at the bit error probability of 10/sup -3/.

  • PDF

Performance Analysis of Coded FH/SSMA Communication Network system (부호화한 주파수 도약 대역 확산 통신 네트워크의 성능 분석)

  • 김근묵;정영지;홍은기;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.730-738
    • /
    • 1992
  • This paper alms to analyse the performance of frequency hopping /spread spectrum multiple access system by employing the channel with mixture of AWGN, partial band Jamming, fading and user interference. The performance analysis of FH /SSMA system, taking account of frequency 'hit'(user Interference ) which occurs in the presence of multiple user, produces the following numerical results by computing error probability and throughput of each code in two cases whether the side Information about channel is used or not. The numerical results are as follows : When composite interferences coexist In channel, RS code Is significantly superior to convolutional code in terms of performance. Concatenated code provides the same performance as RS code. The above results show that RS code is pertinent as error-correction code.

  • PDF

Erasure Decoding Method of RS-Convolutional Concatenated Code in Frequency-Hopping Spread Spectrum of Partial Band Jamming Environment. (부분대역 간섭 환경의 주파수도약 대역확산 시스템에서 RS-콘볼루션 연쇄부호의 Erasure 복호방식)

  • 강병무;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1960-1965
    • /
    • 1999
  • In this paper, we propose a new method of erased concatenated code with RS-convolutional code. In the method, we make use of erasure for undecoded information when we have some errors in RS decoding. For decoding with erasure, the method is processed inner decoding and outer decoding again. After the erasure decoding, if the decoding result is better than the previous one, then we use this result. If not, use the previous one. In this paper, we use concatenated RS(63,31)-convolutional(4.1/2) code. Simulation result is compared with calculation result for performance analysis. According to the result, the proposed method has better performance than the others without erasure such that 2dB when 0.5$\leq\rho\leq$1 and 4dB when $\rho\leq$0.3.

  • PDF

Design of a Variable Shortened and Punctured RS Decoder (단축 및 펑처링 기반의 가변형 RS 복호기 설계)

  • Song Moon-Kyou;Kong Min-Han;Lim Myoung-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.763-770
    • /
    • 2006
  • In this paper, a variable Reed-Solomon(RS) decoder with erasure decoding functionality is designed based on the modified Euclid's algorithm(MEA). The variability of the decoder is implemented through shortening and puncturing based on the RS(124, 108, 8) code, other than the primitive RS(255, 239, 8) code. This leads to shortening the decoding latency. The decoder performs 4-step pipelined operation, where each step is designed to be clocked by an independent clock. Thus by using a faster clock for the MEA block, the complexity and the decoding latency can be reduced. It can support both continuous- and burst-mode decoding. It has been designed in VHDL and synthesized in an FPGA chip, consuming 3,717 logic cells and 2,048-bit memories. The maximum decoding throughput is 33 MByte/sec.

The Study about Channel code to Overcome Multipath of Underwater Channel (수중통신채널에서 다중경로 극복을 위한 오류정정부호에 대한 연구)

  • Kim, Nam-Soo;Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.738-745
    • /
    • 2009
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes receive signal to make error floor. In this paper, we propose the underwater communication system using various channel coding schemes such as RS coding, convolutional code, turbo code and concatenated code for overcoming the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error. So interleaver has not effect on error correcting. For correcting of error floor by multipath, it is necessary to use strong channel codes like turbo code. Turbo code is one of the iterative codes. And the performance of concatenated codes including RS code has better performance than using singular channel codes.

Performance Analysis of FEC for Low Power Wireless Sensor Networks (저전력 무선 센서 네트워크를 위한 FEC 성능 분석)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.882-885
    • /
    • 2010
  • In view of the severe energy constraint in sensor networks, it is important to use the error control scheme of the energy efficiently. In this paper, we presented FEC (Forward Error Correcting) codes in terms of their power consumption. One method of FEC is RS (Reed-Solomon) coding, which uses block codes. RS codes work by adding extra redundancy to the data. The encoded data can be stored or transmitted. It could have errors introduced, when the encoded data is recovered. The added redundancy allows a decoder to detect which parts of the received data is corrupted, and corrects them. The number of errors which are able to be corrected by RS code can determine by added redundancy. We could predict the lifetime of RS codes which transmitted at 32 byte a 1 minutes. RS(15, 13), RS(31, 27), RS(63, 57), RS(127,115), and RS(255,239) can keep the days of 138, 132, 126, 111, and 103 respectively.

  • PDF