• Title/Summary/Keyword: ROV (Remotely Operated underwater Vehicle)

Search Result 36, Processing Time 0.024 seconds

Multiple Sensor Fusion Algorithm for the Altitude Estimation of Deep-Sea UUV, HEMIRE (심해무인잠수정 해미래의 고도정보 추정을 위한 다중센서융합 알고리즘)

  • Kim, Dug-Jin;Kim, Ki-Hun;Lee, Pan-Mook;Cho, Sung-Kwon;Park, Yeoun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1202-1208
    • /
    • 2008
  • This paper represents the multiple sensor fusion algorithm for the deep-sea unmanned underwater vehicles (UUV), composed of a remotely operated vehicle (ROV) 'Hemire' and a depressor 'Henuvy'. The performance of underwater positioning system usually highly depend on that of acoustic sensors such as ultra short base line(USBL), long base line(LBL) and altimeter. A practical sensor fusion algorithm is proposed in the sense of a moving window concept. The performance of the proposed algorithm can be observed by applying the algorithm to the Hemire sea trial data which was measured at the East Sea.

$M^2$ MAC: MAC protocol for Real Time Robot Control System based on Underwater Acoustic Communication ($M^2$ MAC(Message Merging): 수중음파통신 기반의 실시간 로봇 제어 시스템을 위한 MAC 프로토콜)

  • Kim, Yung-Pyo;Park, Soo-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.88-96
    • /
    • 2011
  • Underwater acoustic communication is applicable in various areas, such as ocean data collection, undersea exploration and development, tactical surveillance, etc. Thus, robot control system construction used for underwater-robot like AUV or ROV is essential in these areas. In this paper, we propose the Message Merging MAC($M^2$-MAC) protocol, which is suitable for real time robot control system, considering energy efficiency in important parts of underwater acoustic sensor network constitution. In this proposed MAC protocol, gateway node receives the data from robot nodes according to the time slots that were allotted previously. And messages delivered from base-station are generated to one MAC frame by buffering process. Finally, generated MAC frames are broadcasted to all robot nodes in the cluster. Our suggested MAC protocol can also be hybrid MAC protocol, which is successful blend of contention based and contention-free based protocol through relevant procedure with Maintenance&Sleep (M&S) period, when new nodes join and leave as an orphan. We propose mathematical analysis model concerned about End-to-End delay and energy consumption, which is important factor in constructing real-time robot control system. We also verify the excellence of performance according to comparison of existing MAC protocols with our scheme.

A Study on Compressive Strength Estimation of Underwater Concrete Structures According to Water Depths (수중 콘크리트 구조물의 수심별 강도 추정에 관한 연구)

  • Lee, Jisung;Han, Sanghun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • Harbor facilities require long-term durability and safety, and also maintain the performance requirement until the durability life. However, existing harbor facilities are becoming superannuated with durable years and durability is declined by erosion of the sea and damage from sea. In addition, harbor facilities will be in demand for the expansion of harbor and offshore structures with rising economic power by enhancement of domestic industry and increase of import and export. Therefore, in this study, two kinds of nondestructive test (NDT) techniques (schmidt rebound hammer and ultrasonic sensor) are verified for the effective maintenance of underwater concrete structures including harbor facilities. Sea field applicability of Schmidt hammer and ultrasonic sensor was verified by comparing field test result with sea field test result and also deduced the compressive strength estimation equation by depth of the water. On the basis of the sea field test result, compressive strength estimation equation which was deduced by multiple regression analysis indicated highest accuracy compared to other equations, especially it will be more likely to be used in underwater because of the depth of water correction. In the future, if schmidt hammer and ultrasonic sensor which were invented as waterproofing are used with ROV (Remotely Operated Vehicle), it will be possible to make a diagnosis of high reliability for underwater concrete structures and set up a ubiquitous concept of NDT system.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Navigation System for a Deep-sea ROV Fusing USBL, DVL, and Heading Measurements (USBL, DVL과 선수각 측정신호를 융합한 심해 무인잠수정의 항법시스템)

  • Lee, Pan-Mook;Shim, Hyungwon;Baek, Hyuk;Kim, Banghyun;Park, Jin-Yeong;Jun, Bong-Huan;Yoo, Seong-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.315-323
    • /
    • 2017
  • This paper presents an integrated navigation system that combines ultra-short baseline (USBL), Doppler velocity log (DVL), and heading measurements for a deep-sea remotely operated vehicle, Hemire. A navigation model is introduced based on the kinematic relation of the position and velocity. The system states are predicted using the navigation model and corrected with the USBL, DVL, and heading measurements using the Kalman filter. The performance of the navigation system was confirmed through re-navigation simulations with the measured data at the Southern Mariana Arc submarine volcanoes. Based on the characteristics of the measurements, the design process for the parameters of the system modeling error covariance, measurement error covariance, and initial error covariance are presented. This paper reviews the influence of the outliers and blackout of the USBL and DVL measurements, and proposes an outlier rejection algorithm that is robust to USBL blackout. The effectiveness of the method is demonstrated with re-navigation for the data that includes USBL blackouts.

Efficient Searching for Shipwreck Using an Integrated Geophysical Survey Techniques in the East Sea of Korea (동해에서 지구 물리 이종방법간의 결합시스템을 활용한 침선 수색의 효용성 연구)

  • Lee-Sun, Yoo;Nam Do, Jang;Seom-Kyu, Jung;Seunghun, Lee;Cheolku, Lee;Sunhyo, Kim;Jin Hyung, Cho
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.355-364
    • /
    • 2022
  • When the 60-ton-class patrol boat '72' of the Korea Coast Guard (KCG) was on duty and she accidentally collided with another patrol boat ('207', 200-ton-class) and sank. A month-long search found a small amount of lost items, but neither the crew nor the ship was found. For the first time in 39 years since the accident, the Korea Institute of Ocean Science and Technology (KIOST) searched the boat 72 using the latest integrated geophysical techniques. A number of sonar images presumed to be of a sunken ship was acquired using a combined system of side scan sonar and marine magnetometer, operated at an altitude of approximately 30 m from the seabed. At the same time, a strong magnetic anomaly (100 nT) was detected in one place, indicating the presence of an iron ship. A video survey using a remotely operated underwater vehicle (ROV) confirmed the presence of a shielding part of a personal firearm at the stern of the sunken vessel. Based on these comprehensive data, the sunken vessel discovered in this exploration was assumed to be '72'. This result is meaningful in terms of future ocean exploration and underwater archaeology, as the integrated system of various geophysical methods is an efficient means of identifying objects present in the water.