본 논문에서는 중요도를 반영한 긴 회의록 요약 모델을 제안한다. 제안한 모델은 먼저 회의록을 일정 크기로 구분한 후 구분된 텍스트에 대해 중간 요약문을 생성하고 각 요약문의 중요도를 계산한다. 다음으로 생성된 중간 요약문과 중요도를 함께 사용하여 최종 요약문을 생성한다. 제안 방법은 최종 요약문을 생성할 때 중간 요약문을 다르게 반영하므로 중요한 중간 요약문에서는 핵심 내용을 중점적으로 생성하도록 한다. 실험에서 제안한 요약 모델은 BART기반 요약 모델과, 중요도를 고려하지 않는 요약 모델(SUMMN)보다 핵심 내용을 포함한 요약문을 생성하였고, 평가 데이터에 대해 ROUGE-1 기준 1.37, 0.29 향상된 성능을 보였다.
정보의 증가 속에서 학문 연구의 환경은 지속적으로 변화하고 있으며, 이에 따라 대량의 문서를 효과적으로 분석하는 방법의 필요성이 대두된다. 본 연구에서는 BART(Bidirectional and Auto-Regressive Transformers) 기반의 문서 요약 모델을 사용하여 텍스트를 정제하여 핵심 내용을 추출하고, 이를 LDA(Latent Dirichlet Allocation) 알고리즘을 통한 토픽 모델링의 성능 향상 방법을 제시한다. 이는 문서 요약을 통해 LDA 토픽 모델링의 성능과 효율성을 향상시키는 접근법을 제안하고 실험을 통해 검증한다. 실험 결과, 논문 데이터를 요약하는 BART 기반 모델은 Rouge-1, Rouge-2, Rouge-L 성능 평가에서 각각 0.5819, 0.4384, 0.5038의 F1-Score를 나타내어 원문의 중요 정보를 포착하고 있음을 보인다. 또한, 요약된 문서를 사용한 토픽 모델링은 Perplexity 지표를 통한 성능 비교에서 원문을 사용한 토픽 모델링의 경우보다 약 8.08% 더 높은 성능을 보인다. 이는 토픽 모델링 과정에서 데이터 처리량의 감소와 효율성 향상에 기여한다.
문서 추출 요약 연구에서는 문장 간 관계를 기반으로 중요한 문장을 선택하는 다양한 방법들이 제안되었다. 문장의 도합유사도를 이용한 한국어 문서 요약에서는 문장의 도합유사도를 문장 정보량으로 보고, 이를 기준으로 중요한 문장을 선택하여 요약문을 추출하였다. 그러나 이는 각 문장이 전체 문서에 기여하는 다양한 중요도를 고려하지 못한다는 문제가 있다. 이에 본 연구에서는 문장의 정량적 정보량과 의미적 정보량을 기반으로 중요한 문장을 선택하여 요약문을 제공하는 문서 추출 요약 방법을 제안한다. 실험 결과, 추출 문장 일치도는 58.56%, ROUGE 점수가 34로 비교 연구보다 우수한 성능을 보였으며, 딥러닝 기반 방법과 비교해 추출 방법은 가볍지만 성능은 유사하였다. 이를 통해 문장 간 의미적 유사성을 기반으로 정보를 압축해 나가는 방식이 문서 추출 요약에서 중요한 접근 방법임을 확인하였다. 또한 빠르게 추출된 요약문을 기반으로 문서 생성요약단계를 효과적으로 수행할 수 있으리라 기대한다.
대용량의 텍스트 문서가 매일 만들어지는 빅데이터 환경에서 제목은 문서의 핵심 아이디어를 빠르게 집어내는데 매우 중요한 단서가 된다. 그러나 블로그 기사나 소셜 미디어 메시지와 같은 많은 종류의 문서들은 제목을 갖고 있지 않다. 본 논문에서는 주의집중 및 복사 작용을 가진 sequence-to-sequence 순환신경망을 사용한 제목 생성 모델을 제안한다. 제안 모델은 양방향 GRU(Gated Recurrent Unit) 네트워크에 기반 하여 입력 문장을 인코딩(encoding)하고, 입력 문장에서 자동 선별된 키워드와 함께 인코딩된 문장을 디코딩함으로써 제목 단어들을 생성한다. 93,631문서의 학습 데이터와 500문서의 평가 데이터를 가진 실험에서 주의집중 작용방법이 복사 작용방법보다 높은 어휘 일치율(ROUGE-1: 0.1935, ROUGE-2: 0.0364, ROUGE-L: 0.1555)을 보였고 사람이 정성평가한 지표는 복사 작용방법이 높은 성능을 보였다.
텍스트 생성요약은 자연어처리의 과업 중 하나로 긴 텍스트의 내용을 보존하면서 짧게 축약된 요약문을 생성한다. 생성요약 과업의 특성 상 본문의 핵심내용을 요약문에서 보존하는 것은 매우 중요하다. 기존의 생성요약 방법론은 정답요약과의 어휘 중첩도(Lexical-Overlap)를 기반으로 본문의 내용과 유창성을 측정했다. ROUGE는 생성요약 요약모델의 평가지표로 많이 사용하는 어휘 중첩도 기반의 평가지표이다. 생성요약 벤치마크에서 ROUGE가 49점대로 매우 높은 성능을 보임에도 불구하고, 생성한 요약문과 본문의 내용이 불일치하는 경우가 30% 가량 존재한다. 본 연구에서는 정답요약의 도움 없이 본문만을 활용해 생성요약 모델의 성능을 평가하는 방법론을 제안한다. 본 연구에서 제안한 평가점수를 AggreFACT의 라벨과 상관도 분석결과, 다음의 두 가지 경우 가장 높은 상관관계를 보였다. 첫 번째는 Transformer 구조의 인코더-디코더 구조에 대규모 사전학습을 진행한 BART와 PEGASUS 등을 생성요약 모델의 베이스라인으로 사용한 경우이고, 두 번째는 요약문 전체에 걸쳐 오류가 발생한 경우이다.
최근의 문서요약 시스템은 인공신경망을 이용한 End-to-End 방식이 주류를 이루고 있다. 이러한 시스템은 인간의 자질 추출 과정이 필요 없으며 데이터 중심의 접근 방법을 채택한다. 그러나 기존의 관련 연구들은 품사 정보, 개체명 정보, 단어의 빈도 정보와 같은 언어 분석 자질이 중요 문장을 선택하여 요약을 작성하는데 유용함을 보여왔다. 본 연구에서는 기존의 언어 분석 자질을 활용하여 인공신경망을 기반으로 한 단일 문서의 추출 요약 시스템을 제안한다. 언어 분석 자질의 유용성을 보이기 위해 자질을 사용하는 모델과 사용하지 않는 모델을 비교하였다. 실험 결과 자질을 사용하는 모델이 그렇지 않은 모델에 비해 약 0.5점의 Rouge-2 F1점수 향상을 보였다.
문서 요약은 길이가 긴 원본 문서에서 의미를 유지한 채 짧은 문서나 문장을 얻어내는 작업을 의미한다. 딥러닝을 이용한 자연어처리 기술들이 연구됨에 따라 end-to-end 방식의 자연어 생성 모델인 sequence-to-sequence 모델을 문서 요약 생성에 적용하는 방법들이 연구되었다. 본 논문에서는 여러 자연어처리 분야에서 높은 성능을 보이고 있는 BERT 모델을 이용한 자연어 생성 모델에 복사 메커니즘과 강화 학습을 추가한 문서 요약 모델을 제안한다. 복사 메커니즘은 입력 문장의 단어들을 출력 문장에 복사하는 기술로 학습데이터에서 학습되기 힘든 고유 명사 등의 단어들에 대한 성능을 높이는 방법이다. 강화 학습은 정답 단어의 확률을 높이기 위해 학습하는 지도 학습 방법과는 달리 연속적인 단어 생성으로 얻어진 전체 문장의 보상 점수를 높이는 방향으로 학습하여 생성되는 단어 자체보다는 최종 생성된 문장이 더 중요한 자연어 생성 문제에 효과적일 수 있다. 실험결과 기존의 BERT 생성 모델 보다 복사 메커니즘과 강화 학습을 적용한 모델의 Rouge score가 더 높음을 확인 하였다.
최근 대용량 말뭉치를 기반으로 한 언어 모델이 개발됨에 따라 다양한 자연어처리 분야에서 사람보다 높은 성능을 보이는 시스템이 제안되었다. 이에 따라, 더 어렵고 복잡한 문제를 해결하기 위한 데이터셋들이 공개되었으며 대표적으로 기계독해 작업에서는 시스템이 질문에 대해 답변할 수 없다고 판단할 수 있는지 평가하기 위한 데이터셋이 공개되었다. 입력 받은 데이터에 대해 답변할 수 없다고 판단하는 것은 실제 애플리케이션에서 중요한 문제이기 때문에, 이를 해결하기 위한 연구도 다양하게 진행되었다. 본 논문에서는 문서를 이해하여 답변할 수 없는 데이터에 대해 효과적으로 판단할 수 있는 기계독해 시스템을 제안한다. 제안 모델은 문서의 내용과 질문에 대한 이해도가 낮을 경우 정확한 정답을 맞히지 못하는 사람의 독해 패턴에서 착안하여 기계독해 시스템의 문서 이해도를 높이고자 한다. KLUE-MRC 개발 데이터를 통한 실험에서 EM, Rouge-w 기준으로 각각 71.73%, 76.80%을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.