• 제목/요약/키워드: ROUGE기반 중요도

검색결과 8건 처리시간 0.019초

ROUGE기반 중요도를 반영한 긴 회의록 요약 (A Long Meeting Summarization using ROUGE-based Importance)

  • 임진형;송현제
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.41-46
    • /
    • 2022
  • 본 논문에서는 중요도를 반영한 긴 회의록 요약 모델을 제안한다. 제안한 모델은 먼저 회의록을 일정 크기로 구분한 후 구분된 텍스트에 대해 중간 요약문을 생성하고 각 요약문의 중요도를 계산한다. 다음으로 생성된 중간 요약문과 중요도를 함께 사용하여 최종 요약문을 생성한다. 제안 방법은 최종 요약문을 생성할 때 중간 요약문을 다르게 반영하므로 중요한 중간 요약문에서는 핵심 내용을 중점적으로 생성하도록 한다. 실험에서 제안한 요약 모델은 BART기반 요약 모델과, 중요도를 고려하지 않는 요약 모델(SUMMN)보다 핵심 내용을 포함한 요약문을 생성하였고, 평가 데이터에 대해 ROUGE-1 기준 1.37, 0.29 향상된 성능을 보였다.

  • PDF

BART 기반 문서 요약을 통한 토픽 모델링 성능 향상 (Performance Improvement of Topic Modeling using BART based Document Summarization)

  • 김은수;유현;정경용
    • 인터넷정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.27-33
    • /
    • 2024
  • 정보의 증가 속에서 학문 연구의 환경은 지속적으로 변화하고 있으며, 이에 따라 대량의 문서를 효과적으로 분석하는 방법의 필요성이 대두된다. 본 연구에서는 BART(Bidirectional and Auto-Regressive Transformers) 기반의 문서 요약 모델을 사용하여 텍스트를 정제하여 핵심 내용을 추출하고, 이를 LDA(Latent Dirichlet Allocation) 알고리즘을 통한 토픽 모델링의 성능 향상 방법을 제시한다. 이는 문서 요약을 통해 LDA 토픽 모델링의 성능과 효율성을 향상시키는 접근법을 제안하고 실험을 통해 검증한다. 실험 결과, 논문 데이터를 요약하는 BART 기반 모델은 Rouge-1, Rouge-2, Rouge-L 성능 평가에서 각각 0.5819, 0.4384, 0.5038의 F1-Score를 나타내어 원문의 중요 정보를 포착하고 있음을 보인다. 또한, 요약된 문서를 사용한 토픽 모델링은 Perplexity 지표를 통한 성능 비교에서 원문을 사용한 토픽 모델링의 경우보다 약 8.08% 더 높은 성능을 보인다. 이는 토픽 모델링 과정에서 데이터 처리량의 감소와 효율성 향상에 기여한다.

문장 정보량 기반 문서 추출 요약의 효과성 제고 (Improving the effectiveness of document extraction summary based on the amount of sentence information)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.31-38
    • /
    • 2022
  • 문서 추출 요약 연구에서는 문장 간 관계를 기반으로 중요한 문장을 선택하는 다양한 방법들이 제안되었다. 문장의 도합유사도를 이용한 한국어 문서 요약에서는 문장의 도합유사도를 문장 정보량으로 보고, 이를 기준으로 중요한 문장을 선택하여 요약문을 추출하였다. 그러나 이는 각 문장이 전체 문서에 기여하는 다양한 중요도를 고려하지 못한다는 문제가 있다. 이에 본 연구에서는 문장의 정량적 정보량과 의미적 정보량을 기반으로 중요한 문장을 선택하여 요약문을 제공하는 문서 추출 요약 방법을 제안한다. 실험 결과, 추출 문장 일치도는 58.56%, ROUGE 점수가 34로 비교 연구보다 우수한 성능을 보였으며, 딥러닝 기반 방법과 비교해 추출 방법은 가볍지만 성능은 유사하였다. 이를 통해 문장 간 의미적 유사성을 기반으로 정보를 압축해 나가는 방식이 문서 추출 요약에서 중요한 접근 방법임을 확인하였다. 또한 빠르게 추출된 요약문을 기반으로 문서 생성요약단계를 효과적으로 수행할 수 있으리라 기대한다.

주의집중 및 복사 작용을 가진 Sequence-to-Sequence 순환신경망을 이용한 제목 생성 모델 (Title Generation Model for which Sequence-to-Sequence RNNs with Attention and Copying Mechanisms are used)

  • 이현구;김학수
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.674-679
    • /
    • 2017
  • 대용량의 텍스트 문서가 매일 만들어지는 빅데이터 환경에서 제목은 문서의 핵심 아이디어를 빠르게 집어내는데 매우 중요한 단서가 된다. 그러나 블로그 기사나 소셜 미디어 메시지와 같은 많은 종류의 문서들은 제목을 갖고 있지 않다. 본 논문에서는 주의집중 및 복사 작용을 가진 sequence-to-sequence 순환신경망을 사용한 제목 생성 모델을 제안한다. 제안 모델은 양방향 GRU(Gated Recurrent Unit) 네트워크에 기반 하여 입력 문장을 인코딩(encoding)하고, 입력 문장에서 자동 선별된 키워드와 함께 인코딩된 문장을 디코딩함으로써 제목 단어들을 생성한다. 93,631문서의 학습 데이터와 500문서의 평가 데이터를 가진 실험에서 주의집중 작용방법이 복사 작용방법보다 높은 어휘 일치율(ROUGE-1: 0.1935, ROUGE-2: 0.0364, ROUGE-L: 0.1555)을 보였고 사람이 정성평가한 지표는 복사 작용방법이 높은 성능을 보였다.

오류 유형에 따른 생성요약 모델의 본문-요약문 간 요약 성능평가 비교 (Empirical Study for Automatic Evaluation of Abstractive Summarization by Error-Types)

  • 이승수;강상우
    • 인지과학
    • /
    • 제34권3호
    • /
    • pp.197-226
    • /
    • 2023
  • 텍스트 생성요약은 자연어처리의 과업 중 하나로 긴 텍스트의 내용을 보존하면서 짧게 축약된 요약문을 생성한다. 생성요약 과업의 특성 상 본문의 핵심내용을 요약문에서 보존하는 것은 매우 중요하다. 기존의 생성요약 방법론은 정답요약과의 어휘 중첩도(Lexical-Overlap)를 기반으로 본문의 내용과 유창성을 측정했다. ROUGE는 생성요약 요약모델의 평가지표로 많이 사용하는 어휘 중첩도 기반의 평가지표이다. 생성요약 벤치마크에서 ROUGE가 49점대로 매우 높은 성능을 보임에도 불구하고, 생성한 요약문과 본문의 내용이 불일치하는 경우가 30% 가량 존재한다. 본 연구에서는 정답요약의 도움 없이 본문만을 활용해 생성요약 모델의 성능을 평가하는 방법론을 제안한다. 본 연구에서 제안한 평가점수를 AggreFACT의 라벨과 상관도 분석결과, 다음의 두 가지 경우 가장 높은 상관관계를 보였다. 첫 번째는 Transformer 구조의 인코더-디코더 구조에 대규모 사전학습을 진행한 BART와 PEGASUS 등을 생성요약 모델의 베이스라인으로 사용한 경우이고, 두 번째는 요약문 전체에 걸쳐 오류가 발생한 경우이다.

언어 분석 자질을 활용한 인공신경망 기반의 단일 문서 추출 요약 (Single Document Extractive Summarization Based on Deep Neural Networks Using Linguistic Analysis Features)

  • 이경호;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권8호
    • /
    • pp.343-348
    • /
    • 2019
  • 최근의 문서요약 시스템은 인공신경망을 이용한 End-to-End 방식이 주류를 이루고 있다. 이러한 시스템은 인간의 자질 추출 과정이 필요 없으며 데이터 중심의 접근 방법을 채택한다. 그러나 기존의 관련 연구들은 품사 정보, 개체명 정보, 단어의 빈도 정보와 같은 언어 분석 자질이 중요 문장을 선택하여 요약을 작성하는데 유용함을 보여왔다. 본 연구에서는 기존의 언어 분석 자질을 활용하여 인공신경망을 기반으로 한 단일 문서의 추출 요약 시스템을 제안한다. 언어 분석 자질의 유용성을 보이기 위해 자질을 사용하는 모델과 사용하지 않는 모델을 비교하였다. 실험 결과 자질을 사용하는 모델이 그렇지 않은 모델에 비해 약 0.5점의 Rouge-2 F1점수 향상을 보였다.

복사 메커니즘과 강화 학습을 적용한 BERT 기반의 문서 요약 모델 (BERT-based Document Summarization model using Copying-Mechanism and Reinforcement Learning)

  • 황현선;이창기;고우영;윤한준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.167-171
    • /
    • 2020
  • 문서 요약은 길이가 긴 원본 문서에서 의미를 유지한 채 짧은 문서나 문장을 얻어내는 작업을 의미한다. 딥러닝을 이용한 자연어처리 기술들이 연구됨에 따라 end-to-end 방식의 자연어 생성 모델인 sequence-to-sequence 모델을 문서 요약 생성에 적용하는 방법들이 연구되었다. 본 논문에서는 여러 자연어처리 분야에서 높은 성능을 보이고 있는 BERT 모델을 이용한 자연어 생성 모델에 복사 메커니즘과 강화 학습을 추가한 문서 요약 모델을 제안한다. 복사 메커니즘은 입력 문장의 단어들을 출력 문장에 복사하는 기술로 학습데이터에서 학습되기 힘든 고유 명사 등의 단어들에 대한 성능을 높이는 방법이다. 강화 학습은 정답 단어의 확률을 높이기 위해 학습하는 지도 학습 방법과는 달리 연속적인 단어 생성으로 얻어진 전체 문장의 보상 점수를 높이는 방향으로 학습하여 생성되는 단어 자체보다는 최종 생성된 문장이 더 중요한 자연어 생성 문제에 효과적일 수 있다. 실험결과 기존의 BERT 생성 모델 보다 복사 메커니즘과 강화 학습을 적용한 모델의 Rouge score가 더 높음을 확인 하였다.

  • PDF

기계독해 시스템에서 답변 불가능 문제 해결을 위한 독해 패턴 모방 방법 (Machine Reading Comprehension System to Solve Unanswerable Problems using Method of Mimicking Reading Comprehension Patterns)

  • 이예진;장영진;이현구;신동욱;박찬훈;강인호;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.139-143
    • /
    • 2021
  • 최근 대용량 말뭉치를 기반으로 한 언어 모델이 개발됨에 따라 다양한 자연어처리 분야에서 사람보다 높은 성능을 보이는 시스템이 제안되었다. 이에 따라, 더 어렵고 복잡한 문제를 해결하기 위한 데이터셋들이 공개되었으며 대표적으로 기계독해 작업에서는 시스템이 질문에 대해 답변할 수 없다고 판단할 수 있는지 평가하기 위한 데이터셋이 공개되었다. 입력 받은 데이터에 대해 답변할 수 없다고 판단하는 것은 실제 애플리케이션에서 중요한 문제이기 때문에, 이를 해결하기 위한 연구도 다양하게 진행되었다. 본 논문에서는 문서를 이해하여 답변할 수 없는 데이터에 대해 효과적으로 판단할 수 있는 기계독해 시스템을 제안한다. 제안 모델은 문서의 내용과 질문에 대한 이해도가 낮을 경우 정확한 정답을 맞히지 못하는 사람의 독해 패턴에서 착안하여 기계독해 시스템의 문서 이해도를 높이고자 한다. KLUE-MRC 개발 데이터를 통한 실험에서 EM, Rouge-w 기준으로 각각 71.73%, 76.80%을 보였다.

  • PDF