Machine Reading Comprehension System to Solve Unanswerable Problems using Method of Mimicking Reading Comprehension Patterns

기계독해 시스템에서 답변 불가능 문제 해결을 위한 독해 패턴 모방 방법

  • Published : 2021.10.14

Abstract

최근 대용량 말뭉치를 기반으로 한 언어 모델이 개발됨에 따라 다양한 자연어처리 분야에서 사람보다 높은 성능을 보이는 시스템이 제안되었다. 이에 따라, 더 어렵고 복잡한 문제를 해결하기 위한 데이터셋들이 공개되었으며 대표적으로 기계독해 작업에서는 시스템이 질문에 대해 답변할 수 없다고 판단할 수 있는지 평가하기 위한 데이터셋이 공개되었다. 입력 받은 데이터에 대해 답변할 수 없다고 판단하는 것은 실제 애플리케이션에서 중요한 문제이기 때문에, 이를 해결하기 위한 연구도 다양하게 진행되었다. 본 논문에서는 문서를 이해하여 답변할 수 없는 데이터에 대해 효과적으로 판단할 수 있는 기계독해 시스템을 제안한다. 제안 모델은 문서의 내용과 질문에 대한 이해도가 낮을 경우 정확한 정답을 맞히지 못하는 사람의 독해 패턴에서 착안하여 기계독해 시스템의 문서 이해도를 높이고자 한다. KLUE-MRC 개발 데이터를 통한 실험에서 EM, Rouge-w 기준으로 각각 71.73%, 76.80%을 보였다.

Keywords

Acknowledgement

본 연구는 네이버 산학연구용역 과제의 지원을 받아 수행되었음