• Title/Summary/Keyword: ROS1 Protein

Search Result 494, Processing Time 0.027 seconds

Antioxidants and Anti-obesity Activities of Hot Water and Ethanolic Extracts from Cheonnyuncho (Opuntia humifusa) (천년초의 열수 및 에탄올 추출물의 항산화 및 항비만 활성)

  • Kim, Dae-Jung;Jung, Ji-Hoon;Kim, Sun-Gu;Lee, Hya-Ku;Lee, Seong-Kap;Hong, Hee-Do;Lee, Boo-Yong;Lee, Ok-Hwan
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.366-373
    • /
    • 2011
  • Recent studies suggested that Cheonnyuncho is a significant source of bioactive phenolic compounds, comparable to phytochemicals, including green tea and onion. In this study, the hot-water and 80% ethanolic extracts of Cheonnyuncho were assessed as to their total phenol content, total flavonoids content, antioxidant activity (DPPH radical-scavenging activity and reducing power), and anti-obesity activity. The results showed that the total phenol contents of the hot water extract and the 80% ethanolic extract were $16.52{\pm}3.87$ and $13.44{\pm}0.85$ mg GAE/g, respectively. The total flavonoids content was detected only in the 80% ethanolic extract, however, with a 778.08 ${\mu}g$ catechin equivalents/g content. The DPPH radical-scavenging activity and reducing power of the 80% ethanolic extract from Cheonnyuncho was significantly higher than those of the water extract (p < 0.05). During the adipocyte differentiation, the 80% ethanolic extract of Cheonnyuncho more significantly inhibited lipid accumulation and ROS production than the 3T3-L1 cells that were treated with hot water extract. Furthermore, the 80% ethanolic extract of Cheonnyuncho suppressed the mRNA abundance of the adipogenic transcription factor, $PPAR{\gamma}$ (peroxisome proliferator-activated receptor ${\gamma}$), and its target gene, aP2 (adipocyte protein 2). These results indicate that Cheonnyuncho extracts can inhibit adipogenesis through a mechanism that involves direct down regulation of $PPAR{\gamma}$ gene expression or via modulation of ROS production associated with radical-scavenging activities.

Socheongja and Socheong 2 Extracts Suppress Lipopolysaccharide-induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages through Activating Nrf2/HO-1 Signaling and Suppressing MAPKs Pathway (RAW 264.7 대식세포에서 Nrf2/HO-1 신호 전달계 활성화와 MAPKs 경로 억제를 통한 소청자와 소청2호의 LPS 매개 염증성 및 산화적 스트레스 반응의 억제)

  • Kwon, Da Hye;Choi, Eun Ok;Hwang, Hye-Jin;Kim, Kook Jin;Hong, Su Hyun;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Inflammatory response and oxidative stress play critical roles in the development and progression of many human diseases. Therefore, a great deal of attention has been focused on finding functional materials that can control inflammation and oxidative stress simultaneously. The purpose of this study was to investigate the effects of Socheongja and Socheong 2, Korean black seed coat soybean varieties, on the inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our data indicated that the extracts of Socheongja (SCJ) and Socheong 2 (SC2) significantly suppressed LPS-induced production of nitrite oxide (NO) and prostaglandin $E_2$, key pro-inflammatory mediators, by suppressing the expression of inducible NO synthase and cyclooxygenase-2. It was also found that SCJ and SC2 reduced the LPS-induced secretion of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$, which was concomitant with a decrease in the protein levels. In addition, SCJ and SC2 markedly diminished LPS-stimulated intracellular reactive oxygen species accumulation, and effectively enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 expression. Furthermore, LPS-induced activation of mitogen-activated protein kinases (MAPKs) was abrogated by SCJ and SC2. Taken together, these data suggest that SCJ and SC2 may offer protective roles against LPS-induced inflammatory and oxidative responses in RAW 264.7 macrophages through attenuating MAPKs pathway, and these effects are mediated, at least in part, through activating Nrf2/HO-1 pathway. Given these results, we propose that SCJ and SC2 have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by over-activation of macrophages.

Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. (사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과)

  • Yun, Hyun-Joung;Kim, Byung-Wan;Lee, Chang-Hyun;Jung, Jae-Ha;Heo, Sook-Kyung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF

Effects of hot water extracts of roasted radish against renal oxidative stress induced by high-fat diet (고지방식사로 유도된 신장 산화스트레스를 개선하는 가압볶음 무말랭이 열수추출물 효과)

  • Jeon, Yeonhui;Kim, Mijeong;Han, Seongkyung;Song, Yeong-Bok;Song, Yeong Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.203-208
    • /
    • 2017
  • The antioxidant and anti-inflammatory effects of roasted dried radish (RDR) against renal oxidative stress were examined in high-fat diet (HFD)-fed mice. The HFD was prepared by adding lard to chow diet to provide 50% of the calories from fat. Hot water extracts of dried radish (DR) or RDR were administered orally to mice at 237 mg/kg bw/day, whereas distilled water was administered as a vehicle for 12 weeks. Compared to the control group, renal reactive oxygen species, peroxynitrite, and thiobarbituric acid reactive substance level in the DR or RDR group were significantly decreased, whereas the glutathione level was increased (p<0.05). Protein expressions of antioxidant factors such as nuclear factor erythroid 2-related factor-2, heme oxygenase-1, glutathione S-transferase, superoxide dismutase, catalase, and glutathione peroxidase were significantly increased in the DR and RDR groups; however, nuclear factor-kappa B expression was suppressed (p<0.05). These antioxidant and anti-inflammatory effects of RDR were found to be significantly greater than those of DR.

The Mitochondrial Warburg Effect: A Cancer Enigma

  • Kim, Hans H.;Joo, Hyun;Kim, Tae-Ho;Kim, Eui-Yong;Park, Seok-Ju;Park, Ji-Kyoung;Kim, Han-Jip
    • Interdisciplinary Bio Central
    • /
    • v.1 no.2
    • /
    • pp.7.1-7.7
    • /
    • 2009
  • "To be, or not to be?" This question is not only Hamlet's agony but also the dilemma of mitochondria in a cancer cell. Cancer cells have a high glycolysis rate even in the presence of oxygen. This feature of cancer cells is known as the Warburg effect, named for the first scientist to observe it, Otto Warburg, who assumed that because of mitochondrial malfunction, cancer cells had to depend on anaerobic glycolysis to generate ATP. It was demonstrated, however, that cancer cells with intact mitochondria also showed evidence of the Warburg effect. Thus, an alternative explanation was proposed: the Warburg effect helps cancer cells harness additional ATP to meet the high energy demand required for their extraordinary growth while providing a basic building block of metabolites for their proliferation. A third view suggests that the Warburg effect is a defense mechanism, protecting cancer cells from the higher than usual oxidative environment in which they survive. Interestingly, the latter view does not conflict with the high-energy production view, as increased glucose metabolism enables cancer cells to produce larger amounts of both antioxidants to fight oxidative stress and ATP and metabolites for growth. The combination of these two different hypotheses may explain the Warburg effect, but critical questions at the mechanistic level remain to be explored. Cancer shows complex and multi-faceted behaviors. Previously, there has been no overall plan or systematic approach to integrate and interpret the complex signaling in cancer cells. A new paradigm of collaboration and a well-designed systemic approach will supply answers to fill the gaps in current cancer knowledge and will accelerate the discovery of the connections behind the Warburg mystery. An integrated understanding of cancer complexity and tumorigenesis is necessary to expand the frontiers of cancer cell biology.

Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells

  • Lee, Yoon-Jin;Bae, Jin-Ho;Kim, Soo-A;Kim, Sung-Ho;Woo, Kee-Min;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.567-576
    • /
    • 2017
  • The $Na^+/H^+$ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular $Na^+$ and the extrusion of intracellular $H^+$. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent $Na^+/H^+-exchange$ inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a $sub-G_0/G_1$ peak, and a $G_2/M$ phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, $p-ATM^{Ser1981}$, $p-ATR^{Ser428}$, $p-CHK1^{Ser345}$, and $p-CHK2^{Thr68}$, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acidtolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.

Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli (황색 포도상구균과 대장균에 대한 은나노 입자의 항균활성)

  • Kim, Soo-Hwan;Lee, Hyeong-Seon;Ryu, Deok-Seon;Choi, Soo-Jae;Lee, Dong-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • The antibacterial activities of silver nanoparticles (Ag-NPs) were studied with respect to Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli by observing the bacterial cells treated or not with Ag-NPs by FE-SEM as well as measuring the growth curves, formation of bactericidal ROS, protein leakage, and lactate dehydrogenase activity involved in the respiratory chain. Bacterial cells were treated with Ag-NPs powder, and the growth rates were investigated under varying concentrations of Ag-NPs, incubation times, incubation temperatures, and pHs. As a result, S. aureus and E. coli were shown to be substantially inhibited by Ag-NPs, and the antibacterial activity of Ag-NPs did not fluctuate with temperature or pH. These results suggest that Ag-NPs could be used as an effective antibacterial material.

Processing and Biological Activity of Gelatin Hydrolysate from Branchiostegus japonicus Scales (옥돔(Branchiostegus japonicus) 비늘 유래 젤라틴의 가수분해 및 가수분해물의 기능성)

  • Ahn, Yong-Seok;Lee, Won-Woo;Lee, Seung-Hong;Ahn, Gin-Nae;Ko, Chang-Ik;Oh, Chang-Kyung;Oh, Myung-Cheol;Kim, Dong-Woo;Jeon, You-Jin;Kim, Soo-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.417-425
    • /
    • 2009
  • The potential utility of fish scales to the functional food industry has been investigated due to its antioxidant and antihypertensive characteristics. In this study, we report on the reactive oxygen species (ROS) scavenging and angiotensin I converting enzyme (ACE) inhibitory activities of gelatin hydrolysates processed from Branchiostegus japonicus scales, which are also high in protein content (about 46.1%). We prepared the enzymatic gelatin hydrolysates with four proteases (${\alpha}$-chymotrypsin, Alcalase, Neutrase and trypsin) from B. japonicus scale gelatin, which was prepared according to different reaction times, substrate/enzyme ratios and substrate concentrations. The enzymatic hydrolytic degrees of the gelatin increased time-dependently up to 6 hrs, while the Alcalase gelatin hydrolysates showed the highest hydrolysis degrees compared to the others. Furthermore, gelatin hydrolysates of Neutrase and ${\alpha}$-chymotrypsin showed the highest DPPH radical and $H_2O_2$ scavenging activities ($IC_{50}$ value; 9.18 mg/mL and 9.74 mg/mL), respectively. However, the activities were not significant (P<0.05). We also observed that the four gelatin hydrolysates significantly increased ACE inhibitory activities from approximately 20% to 60% (P<0.05), Among them, the Alcalase gelatin hydrolysates showed the higher ACE inhibitory activity ($IC_{50}$ value; 0.73 mg/mL) compared to the others. These results suggest that the enzymatic gelatin hydrolysates prepared from B. japonicus scales may possess a potentially useful function as an ACE inhibitory agent. As such, the utility of B. japonicus scales should be given due consideration for application in the functional food industry.

Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

  • Cui, Yanji;Park, Jee-Yun;Wu, Jinji;Lee, Ji Hyung;Yang, Yoon-Sil;Kang, Moon-Seok;Jung, Sung-Cherl;Park, Joo Min;Yoo, Eun-Sook;Kim, Seong-Ho;Ahn Jo, Sangmee;Suk, Kyoungho;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2015
  • Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, $1{\mu}g/ml$)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of $gp91^{phox}$, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.

Effects of Stocking Density on Performance and Blood Characteristics of Broiler in Summer (혹서기 사육 밀도가 육계의 생산성 및 혈액 성상에 미치는 영향)

  • Yu, D.J.;Na, J.C.;Jang, B.G.;Lee, D.S.;Kim, S.H.;Kim, J.H.;Kang, K.H.;Kang, H.G.;Suh, O.S.;Kang, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • This experiment was conducted to investigate the effects of stocking density on performance and blood characteristics of broiler chicken in summer. One day-old 648 male commercial broiler chicks(Ross strain) were divided into 3 groups with 4 replicates(12 pens), 41 to 69 birds per pen, to compare the stocking density difference on growth performance and blood characteristics. Birds in T1, T2 and T3 were reared in different size 0.050, 0.066, 0.083 $m^2$/bird floor, respectively. The birds were fed the same experimental diet ad libitum for 5 weeks. Chickens were weekly weighed and one bird was selected from each pen to measure blood characteristics at the end of experiment. Body weight and feed intake increased significantly in low density treatment(T3) compare to that of high density treatment(P<0.05). Feed conversion was significantly improved in customary treatment(T2) relative to that of other treatments(P<0.05). No significant difference was observed in moisture contents of bedding among treatments. In blood characteristics, low density treatment(T3) decreased the total protein, cholesterol and albumin, but were no significant difference. From the result of this study, it could be concluded that the higher stocking density might give more stress to the birds from physical stimuli and thus were harmful environment causing lower productions compared to the lower ones