• Title/Summary/Keyword: ROS Generation

Search Result 621, Processing Time 0.031 seconds

Antioxidant and Hepatoprotective Effects of Tomato Extracts

  • Rhim, Tae-Jin
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.649-654
    • /
    • 2006
  • The objective of present study was to investigate the anti oxidative and hepatoprotective effects of tomato extracts. Total antioxidant capacity and total antioxidant response were 5.5 and $19.8{\mu}g$ Trolox equivalent per mg of tomato extract, respectively. DPPH radical scavenging activity of tomato extracts ($10mg\;ml^{-1}$) was 70% as compared to 100% by pyrogallol solution as a reference. The effect of the tomato extracts on lipid peroxidation was examined using rat liver mitochondria induced by iron/ascorbate. Tomato extracts at the concentration of $0.5mg\;ml^{-1}$ significantly decreased TBARS concentration. Tomato extracts prevented lipid peroxidation in a dose-dependent manner. The effect of the tomato extracts on reactive oxygen species (ROS) generation was examined using cell-free system induced by $H_2O_2/FeSO_4$. Addition of $1mg\;ml^{-1}$ of tomato extracts significantly reduced dichlorofluorescein (DCF) fluorescence. Tomato extracts caused concentration-dependent attenuation of the increase in DCF fluorescence, indicating that tomato extracts significantly prevented ROS generation in vitro. The effect of tomato extracts on cell viability and proliferation was examined using hepatocyte culture. Primary cultures of rat hepatocytes were incubated with 1mM tert-butyl hydroperoxide (t-BHP) for 90 min in the presence or absence of tomato extracts. MTT values by addition of tomato extracts at the concentration of 2, 10, and $20mg\;ml^{-1}$ in the presence of t-BHP were 13, 33 and 48%, respectively, compared to 100% as control. Tomato extracts increased cell viability in a dose-dependent manner. These results demonstrate that tomato extracts suppressed lipid peroxidation and t-BHP-induced hepatotoxicity and scavenged ROS generation. Thus antioxidant and hepatoprotective effects of tomato extracts seem to be due to, at least in part, the prevention from free radicals-induced oxidation, followed by inhibition of lipid peroxidation.

The Role of ROS-NF-κB Signaling Pathway in Enhancement of Inflammatory Response by Particulate Matter 2.5 in Lipopolysaccharide-stimulated RAW 264.7 Macrophages (RAW 264.7 대식세포에서 지질 다당류에 의한 미세먼지(PM2.5) 유발 염증 반응 증진에 미치는 ROS-NF-κB 신호 전달 경로의 역할)

  • Kwon, Da Hye;Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Nam, Soo-Wan;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1110-1119
    • /
    • 2021
  • The purpose of this study was to investigate whether the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages could be promoted by particulate matter 2.5 (PM2.5) stimulation. To this end, the levels of inflammatory parameters, reactive oxygen species (ROS) and inflammation-regulating genes were investigated in RAW 264.7 cells treated with PM2.5 in the presence or absence of LPS. Our results showed that the production levels of pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (interleukin-6 and -1β) were significantly increased by PM2.5 stimulation in LPS-treated RAW 264.7 cells, which was correlated with increased expression genes involved in their production. In addition, when LPS-treated RAW 264.7 cells were exposed to PM2.5, nuclear factor-kappaB (NF-κB) expression was further increased in the nucleus, and the expression of inhibitor of NF-κB as well as NF-κB in the cytoplasm was decreased. These results suggest that the co-treatment of PM2.5 and LPS further increases the activation of the NF-κB signaling pathway compared to each treatment alone, thereby contributing to the promotion of transcriptional activity of inflammatory genes. Furthermore, although the generation of ROS was greatly increased by PM2.5 in LPS-treated RAW 264.7 cells, the NF-κB inhibitor did not reduce the generation of ROS. In addition, when the generation of ROS was artificially suppressed, the production of inflammatory mediators and the activation of NF-κB were both abolished. Therefore, our results suggest that the increase in the NF-κB-mediated inflammatory response induced by PM2.5 in LPS-treated RAW 264.7 macrophages was a ROS generation-dependent phenomenon.

Reactive Oxygen Species-Induced Expression of B cell Activating Factor (BAFF) Is Independent of Toll-like Receptor 4 and Myeloid Differentiation Primary Response Gene 88

  • Kim, Hyun-Sun;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.144-150
    • /
    • 2009
  • Reactive oxygen species play a role in signal transduction and in many human diseases. B-cell activating factor (BAFF) plays a role for mature B cell generation and maintenance and for the incidence of autoimmune diseases. We previously reported that BAFF expression was induced by ROS. In this study, we investigated whether ROS-induced BAFF expression was affected by toll-like receptor (TLR) 4 or myeloid differentiation primary response gene (MyD) 88. BAFF expression was increased by serum deprivation that is an experimental modification to produce ROS. In contrast, TLR4 and MyD88 were decreased by serum deprivation. Although ROS production was decreased in TLR4-nonfunctional or MyD88-deficient splenocytes as compared to that in control mice, serum deprivation increased ROS production and augmented BAFF expression in both cells. $50{\mu}M\;H_2O_2$ also increased BAFF expression in TLR4-deficient or MyD88-deficient splenocytes. Collectively, results show that BAFF expression may be mediated by TLR4 or MyD88-independent manner and TLR4 or MyD88 may not be required in BAFF expression.

Development of ROS2-on-Yocto-based Thin Client Robot for Cloud Robotics (클라우드 연동을 위한 ROS2 on Yocto 기반의 Thin Client 로봇 개발)

  • Kim, Yunsung;Lee, Dongoen;Jeong, Seonghoon;Moon, Hyeongil;Yu, Changseung;Lee, Kangyoung;Choi, Juneyoul;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.327-335
    • /
    • 2021
  • In this paper, we propose an embedded robot system based on "ROS2 on Yocto" that can support various robots. We developed a lightweight OS based on the Yocto Project as a next-generation robot platform targeting cloud robotics. Yocto Project was adopted for portability and scalability in both software and hardware, and ROS2 was adopted and optimized considering a low specification embedded hardware system. We developed SLAM, navigation, path planning, and motion for the proposed robot system validation. For verification of software packages, we applied it to home cleaning robot and indoor delivery robot that were already commercialized by LG Electronics and verified they can do autonomous driving, obstacle recognition, and avoidance driving. Memory usage and network I/O have been improved by applying the binary launch method based on shell and mmap application as opposed to the conventional Python method. Finally, we verified the possibility of mass production and commercialization of the proposed system through performance evaluation from CPU and memory perspective.

5-bromoprotocatechualdehyde suppresses growth of human lung cancer cells through modulation of ROS and the AKT/MAPK signaling pathway

  • Jusnseong Kim;Eun-A Kim;Nalae Kang;Seong-Yeong Heo;Soo-Jin Heo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.49-58
    • /
    • 2023
  • Early-stage lung cancer is the deadliest form of the disease. In this study, we investigated the anticancer activity of 5-bromoprotocatechualdehyde (BPCA) extracted from the seaweed Polysiphonia morrowii Harvey (P. morrowii) in lung cancer H460 cells. We extracted P. morrowii powder thrice with 80% aqueous methanol and separated the extract using high-performance liquid chromatography. We then tested BPCA's effects on cell viability, apoptosis, reactive oxygen species (ROS) generation, and protein expression Our results showed that BPCA inhibited tumor cell growth and ROS production and induced apoptosis through mitogen-activated protein kinase (MAPK) and AKT signaling pathways in lung cancer cells. When BPCA was combined with hydrogen peroxide, ROS production and apoptosis increased even further due to the regulation of AKT signaling and JNK-MAPKs pathways. These findings suggest that BPCA induces lung-cancer-cell death through ROS-mediated phosphorylation in AKT/MAPK signaling. This could lead to the development of new and effective treatments for early-stage lung cancer.

ROLE OF REACTIVE OXYGEN SPECIES IN MALE INFERTILITY

  • Sharma, Rakesh K.;Agarwal, Ashok
    • 대한생식의학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.13-28
    • /
    • 2000
  • Human spermatozoa exhibit a capacity to generate ROS and initiate peroxidation of the unsaturated fatty acids in the sperm plasma membrane, which plays a key role in the etiology of male infertility. The short half-life and limited diffusion of these molecules is consistent with their physiologic role in key biological events such as acrosome reaction and hyperactivation. The intrinsic reactivity of these metabolites in peroxidative damage induced by ROS, particularly $H_2O_2$ and the superoxide anion, has been proposed as a major cause of defective sperm function in cases of male infertility. The number of antioxidants known to attack different stages of peroxidative damage is growing, and it will be of interest to compare alpha-tocopherol and ascorbic acid with these for their therapeutic potential in vitro and in vivo. Both spermatozoa and leukocytes generate ROS, although leukocytes produce much higher levels. The clinical significance of leukocyte presence in semen is controversial. Seminal plasma confers some protection against ROS damage because it contains enzymes that scavenge ROS, such as catalase and superoxide dismutase. A variety of defense mechanisms comprising a number of antioxidants can be employed to reduce or overcome oxidative stress caused by excessive ROS. Determination of male infertility etiology is important, as it will help us develop effective therapies to overcome excessive ROS generation. ROS can have both beneficial and detrimental effects on the spermatozoa and the balancing between the amounts of ROS produced and the amounts scavenged at any moment will determine whether a given sperm function will be promoted or jeopardized. Accurate assessment of ROS levels and, subsequently, OS is Vital, as this will help clinicians both elucidate the fertility status and identify the subgroups of patients that respond or do not respond to these therapeutic strategies. The overt commercial claims of antioxidant benefits and supplements for fertility purposes must be cautiously looked into, until proper multicentered clinical trials are studied. From the current data it appears that no Single adjuvant will be able to enhance the fertilizing capacity of sperm in infertile men, and a combination of the possible strategies that are not toxic at the dosage used would be a feasible approach.

  • PDF

Shikonin Induced Necroptosis via Reactive Oxygen Species in the T-47D Breast Cancer Cell Line

  • Shahsavari, Zahra;Karami-Tehrani, Fatemeh;Salami, Siamak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7261-7266
    • /
    • 2015
  • Breast cancer, the most common cancer in the women, is the leading cause of death. Necrotic signaling pathways will enable targeted therapeutic agents to eliminate apoptosis-resistant cancer cells. In the present study, the effect of shikonin on the induction of cell necroptosis or apoptosis was evaluated using the T-47D breast cancer cell line. The cell death modes, caspase-3 and 8 activities and the levels of reactive oxygen species (ROS) were assessed. Cell death mainly occurred through necroptosis. In the presence of Nec-1, caspase-3 mediated apoptosis was apparent in the shikonin treated cells. Shikonin stimulates ROS generation in the mitochondria of T-47D cells, which causes necroptosis or apoptosis. Induction of necroptosis, as a backup-programmed cell death pathway via ROS stimulation, offers a new strategy for the treatment of breast cancer.

Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system

  • Kim, Soo-Min;Hwang, Kyung-A;Choi, Kyung-Chul
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.557-562
    • /
    • 2018
  • Reactive oxygen species (ROS) are major sources of cellular oxidative stress. Specifically, cancer cells harbor genetic alterations that promote a continuous and elevated production of ROS. While such oxidative stress conditions could be harmful to normal cells, they facilitate cancer cell growth in multiple ways by causing DNA damage and genomic instability, and ultimately by reprogramming cancer cell metabolism. This review provides up to date findings regarding the roles of ROS generation induced by diverse biological molecules and chemicals in representative women's cancer. Specifically, we describe the cellular signaling pathways that regulate direct or indirect interactions between ROS homeostasis and metabolism within female genital cancer cells.

Exploitation of Reactive Oxygen Species by Fungi: Roles in Host-Fungus Interaction and Fungal Development

  • Kim, Hyo Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1455-1463
    • /
    • 2014
  • In the past, reactive oxygen species (ROS) have been considered a harmful byproduct of aerobic metabolism. However, accumulating evidence implicates redox homeostasis, which maintains appropriate ROS levels, in cell proliferation and differentiation in plants and animals. Similarly, ROS generation and signaling are instrumental in fungal development and host-fungus interaction. In fungi, NADPH oxidase, a homolog of human $gp91^{phox}$, generates superoxide and is the main source of ROS. The mechanism of activation and signaling by NADPH oxidases in fungi appears to be largely comparable to those in plants and animals. Recent studies have shown that the fungal NADPH oxidase homologs NoxA (Nox1), NoxB (Nox2), and NoxC (Nox3) have distinct functions. In particular, these studies have consistently demonstrated the impact of NoxA on the development of fungal multicellular structures. Both NoxA and NoxB (but not NoxC) are involved in host-fungus interactions, with the function of NoxA being more critical than that of NoxB.

Synergistic Effect of Cisplatin and Berberine on Inhibition of Cell Growth and Induction of Apoptosis involving Oxidative Stress in HeLa Cells (자궁경부암 세포주에서 활성산소종의 영향애 의한 Apoptosis를 통하여 세포성장을 억제하는 Cisplatin과 Berberine의 상승효과)

  • Cho, Hae-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.992-997
    • /
    • 2007
  • Cisplatin is a chemotherapeutic drug which is widely used for cancer therapy including cervical cancer. The purpose of this study is to elucidate synergistic effect of Cisplatin and Berberine on the apoptosis of HeLa cells and to determine whether oxidants are formed as part of apoptotic process. Apoptotic death of HeLa cells by cisplatin and berberine was confirmed by chromatin condensation of HeLa cells and flow cytometric analysis of intracellular ROS(reactive oxygen species) production. In MTT assay, Cell viability was decreased and enhanced ROS generation in combination of cisplatin and berberine significantly, as compared with cisplatin only. Synergistic effect of Cisplatin and Berberine on the inhibition of cell growth by apoptosis was clearly observed and ROS may play an important role in apoptosis. This effect suggest the possibility lowering the concentration of chemotherapeutic drugs, which alleviate the side effect of drugs.