• Title/Summary/Keyword: ROS Generation

Search Result 611, Processing Time 0.028 seconds

Generation of Reactive Oxygen Species in Porcine Parthenogenetic Embryos

  • Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.191-195
    • /
    • 2011
  • The present study was conducted to examine the reactive oxygen species (ROS) generation levels in porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by the combination of electric stimulus and 6-DMAP before in vitro culture. Porcine oocytes and parthenogenetic embryos were stained in 10 ${\mu}M$ dichlorohydrofluorescein diacetate (DCF) or 10 ${\mu}M$ hydroxyphenyl fluorescein (HPF) dye each for 30 min at $39^{\circ}C$. The fluorescent emissions from the samples were recoded as JPEG file and the intensity of fluorescence in oocytes and embryos were analyzed. $H_2O_2$ and $^{\cdot}OH$ radical levels of porcine oocytes were reduced immediately after electric stimulation. However, $H_2O_2$ and $^{\cdot}OH$ radical levels of parthenogenetic embryos were increased with time elapsed after electric stimulation from 0 h to 3 h and after DMAP culture. During in vitro culture, $H_2O_2$ and $^{\cdot}OH$ radical levels were gradually increased from the one-cell stage to the two- and four-cell stages. The result of the present study suggests that the ROS was not increased by electric pulse in porcine embryos. Rather than it seems to be associated with the stage of development and the culture condition.

Korean Red Ginseng Water Extract Restores Impaired Endothelial Function by Inhibiting Arginase Activity in Aged Mice

  • Choi, Kwanhoon;Yoon, Jeongyeon;Lim, Hyun Kyo;Ryoo, Sungwoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young ($10{\pm}3$ weeks) and aged ($55{\pm}5$ weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.

Analysis of (-)-Epigallocatechin-3-Gallate-Induced Apoptosis and Inhibition of Invasiveness in Oral Cavity Carcinoma Squamous Cell Carcinoma According to Expression of c-Met (구강암편평세포암에서 c-Met 발현여부에 따른 (-)-Epigallocatechin-3-Gallate의 세포사멸 및 종양침습억제효과의 변화분석)

  • Shin, Yoo-Seob;Koh, Yoon-Woo;Choi, Eun-Chang;Kang, Sung-Un;Hwang, Hye-Sook;Choo, Oak-Sung;Lee, Han-Bin;Kim, Chul-Ho
    • Korean Journal of Head & Neck Oncology
    • /
    • v.27 no.1
    • /
    • pp.3-11
    • /
    • 2011
  • Hepatocyte growth factor(HGF) and c-Met play an important role in the control of tumor growth and invasion, and they are known to be good prognostic indicators of patient outcome. Epigallocatechin-3-gallate (EGCG) has been shown to have chemopreventive and therapeutic properties by modulating multiple signal pathways regarding the control of proliferation and invasion of cells. In this study, we evaluated the role of c-Met in EGCG-induced inhibition of invasion and apoptosis in an oral cancer cell line. In KB cells where c-Met was knocked down with siRNA, we performed invasion assay and FACS with Annexin V-FITC/PT staining. In addition, we checked the change of mitochondrial membrane potential(MMP) and the generation of reactive oxygen species(ROS). EGCG-induced inhibition of invasiveness was significantly decreased after the knock-down of c-Met. EGCG-induced apoptosis, MMP change and ROS generation was also reduced in c-Met knock-ed-down KB cells. These results suggest that c-Met is involved in EGCG-induced apoptosis and inhibition of invasiveness of oral cancer cell line.

Protective Effect of Galgeun-Tang Against $CCl_4$ Induced Hepatotoxicity (갈근탕의 사염화탄소에 의한 간세포 독성 억제효과)

  • Oh, Su-Young;Seo, Sang-Hee;Lee, Ji-Hye;Lee, Ji-Seon;Ma, Jin-Yeul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.663-668
    • /
    • 2011
  • Galgeun-tang (GGT) has been a great source for treating cold diseases in the folk medicine recipe. Carbon tetrachloride ($CCl_4$) is one type of hepatotoxin that can eventually cause liver injury. During the experiment, we first studied the protective effects of GGT against $CC_4$-induced hepatotoxicity. GGT was pretreated for 3 h, and 1% $CCl_4$ was added to mouse primary liver cells. After 4 h, ROS generation and expression of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) were analyzed by FACS and real time PCR. Also, the activities of ALT and LDH were measured using cultured medium. The hepatic levels of TNF-alpha and iNOS, which are related to inflammation and stress response gene, HSP72 and HO-1 were analyzed by PCR or real time PCR. Liver tissues were analyzed by HE stain. From the observation, we discovered that GGT treatment protects $CCl_4$-induced hepatotoxicity, and that GGT pretreatment decreases ROS generation, TNF-alpha and iNOS expression. However, gene expression of CAT, SOD, GPx, HSP72 and HO-1 were increased by GGT. These results lead to the conclusion that GGT has protective effects against $CCl_4$-induced hepatotoxicity.

Protective Effect of Vitis amurensis Stems and Leaves Extract on Hydrogen Peroxide-induced Oxidative Neuronal Cell Damage in Cultured Neurons (과산화수소수로 유도된 배양 뇌신경세포손상에 대한 왕머루 잎과 줄기 추출물의 보호효과)

  • Kim, Joo-Youn;Ju, Hyun-Soo;Ban, Ju-Yeon;Song, Kyung-Sik;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.1
    • /
    • pp.68-74
    • /
    • 2009
  • Vitis amurensis (VA; Vitaceae) has long been used in oriental herbal medicine. It has been reported that roots and seeds of VA have anti-inflammatory and antioxidant effects. In the present study, the protective effect of ethanol extract from stems and leaves of VA on hydrogen peroxide (${H_2}{O_2}$) (100 ${\mu}M$)-induced neuronal cell damage was examined in primary cultured rat cortical neurons. VA (10-100 ${\mu}g$/ml) concentration-dependently inhibited ${H_2}{O_2}$-induced apoptotic neuronal cell death measured by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. VA inhibited ${H_2}{O_2}$-induced elevation of intracellular $Ca^{2+}$ concentration (${[Ca^{2+}]}_i$) and generation of reactive oxygen species (ROS), which were measured by fluorescent dyes. Pretreatment of VA also prevented glutamate release into medium induced by 100 ${\mu}M$ ${H_2}{O_2}$, which was measured by HPLC. These results suggest that VA showed a neuroprotective effect on ${H_2}{O_2}$-induced neuronal cell death by interfering with ${H_2}{O_2}$-induced elevation of ${[Ca^{2+}]}_i$, glutamate release, and ROS generation. This has a significant meaning of finding a new pharmacological activity of stems and leaves of VA in the CNS.

Establishment of Normal Reference Data of Analysis in the Fresh and Cryopreserved Canine Spermatozoa

  • Park, Byung-Joon;Lee, Hyeon-Jeong;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Embryo Transfer
    • /
    • v.33 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The cryopreservation has been extensively applied in many cells including spermatozoa (semen) during past several decades. Especially, the canine spermatozoa cryopreservation has contributed on generation of progeny of rare/genetically valuable dog breeds, genome resource banking and transportation of male germplasm at a distant place. However, severe and irreversible damages to the spermatozoa during cryopreservation procedures such as the thermal shock (cold shock), formation of intracellular ice crystals, osmotic shock, stress of cryoprotectants and generator of reactive oxygen species (ROS) have been addressed. According as a number of researches have been conducted to overcome these problems and to advance cryopreservation technique, several analytical methods have been employed to evaluate the quality of the fresh or cryopreserved canine spermatozoa in regards to the motility, morphology, integrity of membrane and DNA, mitochondrial activity, ROS generation, binding affinity to oocytes, in vitro fertilization potential and fertility potential by artificial insemination. Because the study designs with certain application of analytical methods are selective and varied depending on each experimental objective and laboratory condition, it is necessary to establish the normal reference data of the fresh or cryopreserved canine spermatozoa for each analytical method to monitor experimental procedure, to translate raw data and to discuss results. Here, we reviewed the recent articles to introduce various analytical methods for the canine spermatozoa as well as to establish the normal reference data for each analytical method in the fresh or cryopreserved canine spermatozoa, based on the results of the previous articles. We hope that this review contributes to the advancement of cryobiology in canine spermatozoa.

Protective Effects of Isorhamnetin against Hydrogen Peroxide-Induced Apoptosis in C2C12 Murine Myoblasts (C2C12 근아세포에서 산자나무 유래 Isorhamnetin의 산화적 스트레스에 의한 Apoptosis 유발 억제 효과)

  • Choi, Yung Hyun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.15 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • Objectives: It was investigated the cytoprotective efficacies of isorhamnetin, a flavonoid originally derived from Hippophae rhamnoides L., against oxidative stress-induced apoptosis in C2C12 myoblasts. Methods: The effects of isorhamnetin on cell growth, apoptosis and reactive oxygen species (ROS) generation were evaluated by trypan blue dye exclusion assay, 4',6-diamidino-2-phenylindole staining and flow cytometry. The levels of apoptosis-regulatory and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins, and caspase activities (caspase-3 and -9) were determined by Western blot analysis and colorimetric assay, respectively. Results: Our results revealed that treatment with isorhamnetin prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased the C2C12 cell viability and, indicating that the exposure of C2C12 cells to isorhamnetin conferred a protective effect against oxidative stress. Isorhamnetin also effectively attenuated $H_2O_2$-induced apoptosis and ROS generation, which was associated with the restoration of the upregulation of Bax and downregulation of Bcl-2 induced by $H_2O_2$. In addition, $H_2O_2$ enhanced the activation of caspase-9 and -3, and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3; however, these events were almost totally reversed by pretreatment with isorhamnetin. Moreover, isorhamnetin increased the levels of heme oxygenase-1, a potent antioxidant enzyme, associated with the induction of Nrf2. Conclusions: Our data indicated that isorhamnetin may potentially serve as an agent for the treatment and prevention of muscle disorders caused by oxidative stress.

Moutan Cortex Extract Inhibits Amyloid ${\beta}$ Protein (25-35)-induced Neurotoxicity in Cultured Rat Cortical Neurons (Amyloid ${\beta}$ 2 Protein (25-35) 유도 배양신경세포 독성에 대한 목단피의 억제효과)

  • Kim, Joo-Youn;Ju, Hyun-Soo;Ban, Ju-Yeon;Song, Kyung-Sik;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.409-415
    • /
    • 2008
  • Moutan cortex, the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), has pharmacological effects such as anti-inflammatory, antiallergic, analgesic and antioxidant activities. We investigated a methanol extract of Moutan cortex for neuroprotective effects on neurotoxicity induced by amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons. Exposure of cultured cortical neurons to $10\;{\mu}M\;A{\beta}$ (25-35) for 24 h induced neuronal apoptotic death. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced neuronal cell death at 30 and $50\;{\mu}g/m{\ell}$, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) which were measured by fluorescent dyes. Moutan cortex also inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$ (25-35), which was measured by HPLC. These results suggest that Moutan cortex prevents $A{\beta}$ (25-35)-induced neuronal cell damage by interfering with the increase of $[Ca^{2+}]_i$, and then inhibiting glutamate release and ROS generation. Moutan cortex may have a therapeutic role in preventing the progression of Alzheimer's disease.

Extract of Cedrela sinensis Leaves Protects Neuronal Cell Damage Induced by Hydrogen Peroxide in Cultured Rat Neurons (과산화수소수로 유도된 배양신경세포손상에 대한 참죽나무잎 추출물의 보호효과)

  • Lee, Soon-Bok;Kim, Ju-Yeon;Cho, Soon-Ock;Ban, Ju-Yeon;Ju, Hyun-Soo;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.444-450
    • /
    • 2007
  • Dried leaves from Cedrela sinensis A. Juss. (CS), have been observed to possess various pharmacological activity and contain various antioxidant constituents. The protective effect of ethanol extract of CS on hydrogen peroxide $(H_2O_2)-induced$ neurotoxicity was examined using primary cultured rat cortical neurons in the present study. Exposure of cultured neurons to 100 ${\mu}M\;H_2O_2$ caused a significant neuronal death as assessed by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. The addition of CS, over a concentration range of 10 to $50{\mu}g/m{\ell}$, concentration-dependently prevented the $H_2O_2-induced$ neuronal apoptotic death. CS $(50{\mu}g/m{\ell})$ significantly inhibited $H_2O_2-induced$ elevation of the cytosolic $Ca^{2+}$ concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fluo-4 AM. CS (30 and $50{\mu}g/m{\ell})$ inhibited glutamate release and generation of reactive oxygen species (ROS) induced by $100{\mu}M\;H_2O_2$. These results suggest that CS may mitigate the $H_2O_2-induced$ neurotoxiciy by interfering with the increase of $[Ca^{2+}]_c$, and then inhibiting glutamate release and generation of ROS in cultured neurons.

Alzheimer's Disease-linked Swedish Amyloid Precursor Protein Mutation Induces Cell Death by Increasing Reactive Oxygen Species Generation

  • Kim Hye Sun;Lee Jun Ho;Kim Eun Mee;Lee Jean Pyo;Suh Yoo Hun
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • The Swedish double mutation (KM670/671NL) of amyloid precursor protein (Swe-APP) is associated with early-onset familial Alzheimer's disease (FAD) and increases amyloid beta peptide production. Although APP/A/3 mediated neurotoxicity is observed both in vitro and in vivo, the relationship between mutant APP expression, A/3 production, and neuronal death observed in the brains of FAD patients remains to be elucidated. In this study, we investigated the mechanisms of Swe-APP-induced cell death in HEK293 and NGF-differentiated PC 12 cells. We found that the expression of Swe-APP induced cytochrome C relase, activation of caspase 3 in HEK 293 and NGF-differentiated PC 12 cells. We also show that the reactive oxygen species (ROS) was detected in Swe-APP expressing HEK 293 cells and NGF-differentiated PC 12 cells and that pretreatment with vitamine E attenuated the cellular death, cytochrome C release induced by Swe-APP expression, indicating the involvement of free radical in these processes. These results suggest one of possible apoptotic mechanisms of Swe-APP which could occur through cytochrome C release from mitochondria and this apoptosis inducing effects could be at least in part, due to ROS generation by Swe-APP expression.

  • PDF