Purpose: $^{18}F$-FDG Fusion Whole Body PET scan is performed approximately 1 hour after injecting $^{18}F$-FDG. At this point in the injection procedure, as a tool of the criteria of time input, time of clocks or computers can be used and in the scan procedure, time of workstation can be used. In case that synchronized time input is not done in the injection and scan procedures for PET scan, time error from injection to scan can occur. This time error may affect Standard Uptake Value (SUV) being used as quantitative assessment. Therefore, in this study, we analyzed the change of SUV according to time input difference and necessity of time synchronization. Materials and Methods: The analysis was performed to 30 patients ($54.8{\pm}15.5$ years old) who examined $^{18}F$-FDG Fusion Whole Body PET scan in Department of nuclear medicine, Asan Medical Center from December 2009 to February 2010. To observe the change of SUV according to time input difference, the image was reconstructed and analyzed by artificially changing time difference of 1, 2, 3, 5, 10, 20 min against the same patients based on 60 minutes. Result: SUV of the image that reconstructed the images of 30 patients by giving intervals of 1, 2, 3, 5, 10, 20 min respectively and the image that entered original time was compared and analyzed through paired t-test. Based on 0 minute, mean SUV of aorta was changed by 0.3, 1.1, 1.4, 3.2, 4.7, 12.5% respectively and there was no statistically significant difference in 1, 2 minutes (p>0.05) but there was significant difference in 3, 5, 10, 20 min (p<0.05). The changes of $SUV_{avg}$ of liver were 1.6, 2.5, 3.0, 4.2, 6.6, 12.8% in 1, 2, 3, 5, 10, 20 min respectively and the changes of $SUV_{max}$ of primary lesion were 1.0, 1.5, 2.2, 3.5, 6.6, 12.8% respectively (p<0.05). Conclusion: Errors may occur in the process of measuring or recording variables affecting SUV such as height and weight of patients, $^{18}F$-FDG dose, Emission scan start time etc. and as these errors are more, the accurate assessment of SUV is interfered. Therefore, in order to assess SUV more accurately, it is thought that efforts to minimize these errors should be made. Of these efforts, time synchronization will be a cornerstone for accurate scanning.