• 제목/요약/키워드: ROI(Region of Interest)

검색결과 482건 처리시간 0.022초

ROI를 이용한 웨이브렛 기반 디지털 영상의 워터마킹 기법 (A Wavelet-Based Watermarking Scheme of Digital Image Using ROI Method)

  • 김태중;홍충선;성지현;황재호;이대영
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.289-296
    • /
    • 2004
  • 일반적인 워터마킹 기술들은 영상의 특성을 고려하지 않은 채 신체 책인 영상에 워터마크를 삽입하는 경우가 많다 본 논문에서는 워터마킹 알고리즘을 웨이브렛을 기반으로 구현을 하였으며, 견고한 워터마크 삽입을 위해 Multi-Threshold Watermark Coding(MTWC)의 원리에 기초하여 Region of Interest(ROI)라고 불리우는 영상의 영역에 큰 계수를 찾아 워터마크를 삽입하게 된다. 이때 Human Visual System(HVS)을 이용하여 견고성과 비가시성의 향상을 도모하였다. 워터마크 삽입대역은 중주파 대역에 삽입을 하게 되는데 중주파 대역에 삽입한 워터마크는 어떠한 영상 처리과정 후에도 높은 비율의 추출을 보였으며, 워터마크가 삽입된 영상의 왜곡정도도 다른 대역보다 상대적으로 적게 나타나므로 중주파 대역에 워터마크를 삽입하였다. 워터마크는 의사 랜덤 시퀀스(Pseudo Random Sequence)로 구성되어 있고 워터마크의 검출은 Cox의 유사도 측정식을 이용하여 워터마크의 삽입여부를 판단한다

outdoor image의 촬영 위치와 방향 정보를 이용한 효율적인 영상 검색방법 (An Efficient Image Retrieval Method Using Informations for Location and Direction of Outdoor Images)

  • 한기태;서창덕
    • 정보처리학회논문지B
    • /
    • 제14B권5호
    • /
    • pp.329-336
    • /
    • 2007
  • 본 논문은 outdoor images의 촬영 위치와 방향 정보를 이용한 영상데이터베이스 구축과 효율적인 검색방법을 제안한다. 또한 위치와 방향 정보의 추출을 자동화 하기위해 디지털카메라에 확장형 GPS모듈(위치 및 방향 계산 기능포함)을 내장하고 EXIF의 GPS IFD tags를 활용할 것을 제안한다. 본 연구에서는 이 정보들을 이용함으로써 사용자가 원하는 타겟 즉, 지형 혹은 지물 등을 포함한 영상을 신속하고 정확하게 검색할 수 있게 된다. 기존의 위치기반 영상검색방법은 특정 거리의 반경 영역인 ROI(Region Of Interest)내에 존재하는 모든 영상을 대상으로 찾기 때문에 불필요한 영상이 포함되었으나, 제안한 방법은 ROI로 지정한 영역의 모든 영상의 검색뿐만 아니라 타겟을 향해 촬영한 특정방향 DOI(Direction Of Interest)내 영상들만을 선택적으로도 검색할 수 있는데 이 경우는 검색의 정확도를 100% 가까이 극대화시킬 수 있다. 이러한 응용을 영상검색 시스템에 적용한다면 위치와 방향정보를 기반으로 한 자연영상의 분류 및 검색뿐만 아니라 다양한 산업분야(재난경보, 소방방재, 교통정보 등) 에서 긴요하게 활용될 수 있을 것이다.

부분용적효과를 고려한 확산텐서영상에 대한 관심영역 분석 연구 (ROI Study for Diffusion Tensor Image with Partial Volume Effect)

  • 최우혁;윤의철
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권2호
    • /
    • pp.84-89
    • /
    • 2016
  • In this study, we proposed ameliorated method for region of interest (ROI) study to improve its accuracy using partial volume effect (PVE). PVE which arose in volumetric images when more than one tissue type occur in a voxel, could be used to reduce an amount of gray matter and cerebrospinal fluid within ROI of diffusion tensor image (DTI). In order to define ROIs, individual b0 image was spatially aligned to the JHU DTI-based atlas using linear and non-linear registration (http://cmrm.med.jhmi.edu/). Fractional anisotropy (FA) and mean diffusivity (MD) maps were estimated by fitting diffusion tensor model to each image voxel, and their mean values were computed within each ROI with PVE threshold. Participants of this study consisted of 20 healthy controls, 27 Alzheimer's disease and 27 normal-pressure hydrocephalus patients. The result showed that the mean FA and MD of each ROI were increased and decreased respectively, but standard deviation was significantly decreased when PVE was applied. In conclusion, the proposed method suggested that PVE was indispensable to improve an accuracy of DTI ROI study.

병사의 시선감지를 이용한 ROI 영상압축 방법 (ROI Image Compression Method Using Eye Tracker for a Soldier)

  • 장혜민;백주현;양동원;최준성
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.257-266
    • /
    • 2020
  • It is very important to share tactical information such as video, images, and text messages among soldiers for situational awareness. Under the wireless environment of the battlefield, the available bandwidth varies dynamically and is insufficient to transmit high quality images, so it is necessary to minimize the distortion of the area of interests such as targets. A natural operating method for soldiers is also required considering the difficulty in handling while moving. In this paper, we propose a natural ROI(region of interest) setting and image compression method for effective image sharing among soldiers. We verify the proposed method through prototype system design and implementation of eye gaze detection and ROI-based image compression.

차선 변경을 위한 차량 탐색 알고리즘 (A Vehicle Detection Algorithm for a Lane Change)

  • 지의경;한민홍
    • 융합신호처리학회논문지
    • /
    • 제8권2호
    • /
    • pp.98-105
    • /
    • 2007
  • 본 논문은 주행 차량의 차선 변경 시, 위험 여부를 판단하는 방법을 제안하고 시스템을 구현한다. 차선 변경의 위험 여부를 판단하기 위해서 첫째, 변경하고자 하는 차선에 관심 영역(ROI)을 설정해야 하고 둘째, 변경할 차선으로 자차가 이동할 때 자차에 위험이 될 차량을 정확하게 추출해야 하며 셋째, 추출된 차량의 방향과 상대 속도, 상대 거리를 계산하여 운전자에게 위험 경보를 울릴지에 대한 여부를 판단해야 한다. ROI를 설정하기 위해서 영역의 한 축이 되는 차선을 잡고 이를 기준으로 영역을 확장시켰는데 좌표 변환 기법을 이용하여 정확성을 높였다. 변경 차선의 정확한 차량 추출을 위하여 적응 배경화면 갱신 모델 기법과 주행 도로의 특징을 이용한 영상의 영상 분할 방법을 이용하였다. 위험 차량으로 추출된 물체는 자차(自車)와의 상대거리, 상대 속도를 계산하고 픽셀 좌표 이동을 일정시간 평균을 내어 방향을 알아내어 위험으로 판단 시 경보를 울리도록 하였다. 제안한 알고리즘은 영역을 최소화하고 도로와 차량의 특징을 이용함으로써 정확도를 높이고 계산량을 줄여 빠른 연산을 요구하는 주행 차량의 영상에서 안정적인 결과를 얻을 수 있었다.

  • PDF

칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출 (Detection of Road Lane with Color Classification and Directional Edge Clustering)

  • 정차근
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.86-97
    • /
    • 2011
  • 본 논문에서는 칼라분류 및 방향성 에지정보의 클러스터링과 이들의 통합에 의한 새로운 도로영역 및 차선검출 알고리즘을 제안한다. 도로영역 및 차선을 하나의 인식대상 물체로 취급하고, 통계적 파라미터의 반복 최적화에 의한 칼라정보의 클러스터링을 수행해서 검출과 인식을 위한 초기정보로 사용한다. 다음으로, 칼라정보가 갖는 물체인식 의 한계를 개선하기 위해 에지정보를 검출하고, 관심영역(Region Of Interest for Lane Boundary(ROI-LB))의 추출과 ROI-LB 영역에서 방향성 에지정보의 검출과 클러스터링을 수행한다. 칼라분류 및 에지 클러스터링의 결과를 통합해, 이들 각각의 정보가 갖는 특징을 이용함으로서 도로환경에 적합한 도로영역 및 차선을 검출할 수 있도록 한다. 제안방법은 도로와 차선에 관한 파라미터릭 수학적 모델을 사용하지 않고 칼라 및 에지의 클러스터링 정보에 의한 non-parametric 방법으로 다양한 도로 환경에 유연한 대응이 가능한 장점을 갖는다. 본 제안방법의 유효성을 입증하기 위해 상이한 촬상조건 및 도로환경에서의 영상에 대한 실험결과를 제시한다.

확률맵 기반 유전자 알고리즘에 의한 ROI 검출 (ROI Detection by Genetic Algorithm Based on Probability Map)

  • 박희정
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.3028-3035
    • /
    • 2010
  • 본 연구에서는 인물영상에서 입술영역을 검출하기 위한 확률맵 기반 유전자 알고리즘을 제안한다. 하나의 최적해 탐색에 사용되었던 기존 유전자 알고리즘을 수정하여 입술과 같은 영역 검출에 부합하는 다수의 해를 얻도록 적용한다. 이를 위해 공간좌표를 의미하는 염색체로 각 개체를 표현하고, 보존구간, 세대수에 따른 부분 균일교배, 비중복 선택 등의 유전연산 방법을 도입한다. 또한 HSV 칼라공간에서 HS성분에 대한 확률맵을 제안하고, 이를 적용함으로써 유전자 알고리즘의 속성인 유사 색상에 대한 적응성을 더욱 증대한다. 실험을 통하여 제안한 알고리즘의 성능을 좌우하는 주요 파라미터 분석, 종료 함수의 종료 조건 $\beta$의 최적값 평가 분석 그리고 교배 방법에 따른 성능 평가 결과를 분석하였으며, 입술 이외의 관심객체 변경에 따른 다른 ROI(Region Of Interest)의 검출에도 유연하게 적응할 수 있음을 관찰하였다.

Vanishing Line based Lane Detection for Augmented Reality-aided Driver Induction

  • Yun, Jeong-Rok;Lee, Dong-Kil;Chun, Sung-Kuk;Hong, Sung-Hoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.73-83
    • /
    • 2019
  • In this paper, we propose the augmented reality(AR) based driving navigation based on robust lane detection method to dynamic environment changes. The proposed technique uses the detected lane position as a marker which is a key element for enhancing driving information. We propose Symmetrical Local Threshold(SLT) algorithm which is able to robustly detect lane to dynamic illumination environment change such as shadows. In addition, by using Morphology operation and Connected Component Analysis(CCA) algorithm, it is possible to minimize noises in the image, and Region Of Interest(ROI) is defined through region division using a straight line passing through several vanishing points We also propose the augmented reality aided visualization method for Interchange(IC) and driving navigation using reference point detection based on the detected lane coordinates inside and outside the ROI. Validation experiments were carried out to assess the accuracy and robustness of the proposed system in vairous environment changes. The average accuracy of the proposed system in daytime, nighttime, rainy day, and cloudy day is 79.3% on 4600 images. The results of the proposed system for AR based IC and driving navigation were also presented. We are hopeful that the proposed research will open a new discussion on AR based driving navigation platforms, and thus, that such efforts will enrich the autonomous vehicle services in the near future.

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권8호
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

Segmentation of Liver Regions in the Abdominal CT Image by Multi-threshold and Watershed Algorithm

  • Kim, Pil-Un;Lee, Yun-Jung;Kim, Gyu-Dong;Jung, Young-Jin;Cho, Jin-Ho;Chang, Yong-Min;Kim, Myoung-Nam
    • 한국멀티미디어학회논문지
    • /
    • 제9권12호
    • /
    • pp.1588-1595
    • /
    • 2006
  • In this paper, we proposed a liver extracting procedure for computer aided liver diagnosis system. Extraction of liver region in an abdominal CT image is difficult due to interferences of other organs. For this reason, liver region is extracted in a region of interest(ROI). ROI is selected by the window which can measure the distribution of Hounsfield Unit(HU) value of liver region in an abdominal CT image. The distribution is measured by an existential probability of HU value of lever region in the window. If the probability of any window is over 50%, the center point of the window would be assigned to ROI. Actually, liver region is not clearly discerned from the adjacent organs like muscle, spleen, and pancreas in an abdominal CT image. Liver region is extracted by the watershed segmentation algorithm which is effective in this situation. Because it is very sensitive to the slight valiance of contrast, it generally produces over segmentation regions. Therefore these regions are required to merge into the significant regions for optimal segmentation. Finally, a liver region can be selected and extracted by prier information based on anatomic information.

  • PDF