Journal of Korean Academy of Oral and Maxillofacial Radiology
/
v.27
no.2
/
pp.7-13
/
1997
조직학적으로 유용성이 입증된 산탈회법을 이용한 인접면 비교적 초기 치아 우식의 병소를 형성하여 진단율을 조사하였다. 산 용액을 이용하여 20개 인접면 치아우식을 20개 소구치에 형성하였고, 37개 인접면 치아우식을 30개 대구치에 형성하였다. 건전한 소구치 20개, 대구치 30개를 포함하여 총 96개 치아를 4개씩 나누어 24개의 블록을 형성하였고, 각각 2개 블록의 교합면을 교합시켜서, 교익촬영을 하였다. 촬영 결과를 36명의 치과의사들이인접면 치아우식의 유무를 기록하고, 동시에 및 ROC 분석을 위한 5 개 범주의 판독 기준으로 판독하여 기록하였다. 인접면 치아우식증 유, 무만으로 판독한 결과 진단의 sensitivity는 0.71, specificity는 0.78 이였다. ROC 분석 한 결과의 곡선도표 아래부분의 평균 면적은 약 0.806 이였다. 치아우식증 유무만으로 진단한 결과는 특정한 sensitivity와 specificity 만을 나타내지만, ROC 분석 결과는 주관적 진단 기준과 구별되는 고유의 진단 능력을 표시하는 1-specificity(False Positive)의 변화에 따른 sensitivity(True Positive)의 변화를 연속적으로 나타내어 주었다.
We propose the multiplication of false rates (MFR) which is a classification accuracy criteria and an area type of rectangle from ROC curve. Optimal threshold obtained using MFR is compared with other criteria in terms of classification performance. Their optimal thresholds for various distribution functions are also found; consequently, some properties and advantages of MFR are discussed by comparing FNR and FPR corresponding to optimal thresholds. Based on general cost function, cost ratios of optimal thresholds are computed using various classification criteria. The cost ratios for cost curves are observed so that the advantages of MFR are explored. Furthermore, the de nition of MFR is extended to multi-dimensional ROC analysis and the relations of classification criteria are also discussed.
In the field of clinical medicine, diagnostic accuracy studies refer to the degree of agreement between the index test and the reference standard for the discriminatory ability to identify a target disorder of interest in a patient. The receiver operating characteristic (ROC) curve offers a graphical display the trade-off between sensitivity and specificity at each cutoff for a diagnostic test and is useful in assigning the best cutoff for clinical use. In this end, the ROC curve analysis is a useful tool for estimating and comparing the accuracy of competing diagnostic tests. This paper reviews briefly the measures of diagnostic accuracy such as sensitivity, specificity, and area under the ROC curve (AUC) that is a summary measure for diagnostic accuracy across the spectrum of test results. In addition, the methods of creating an ROC curve in single diagnostic test with five-category discrete scale for disease classification from healthy individuals, meaningful interpretation of the AUC, and the applications of ROC methodology in clinical medicine to determine the optimal cutoff values have been discussed using a hypothetical example as an illustration.
Various accuracy measures that can be explained on the odds curve are discussed, and an alternative accuracy measure, the maximum square, is proposed based on the characteristics of the odds curve. Thresholds corresponding to these accuracy measures are obtained by considering various probability distribution functions and an illustrative example. Their characteristics are discussed while comparing many kinds of statistics measuring thresholds. Therefore, we can conclude that optimal thresholds could be explored from the odds curve, similar to the ROC curve, and that the maximum square measure can be used as a good accuracy measure that can improve the performance of the binary classification model.
This study aimed to classify normal and nodule images in thyroid ultrasound images using GLCM and machine learning. The research was conducted on 600 patients who visited S Hospital in Busan and were diagnosed with thyroid nodules using thyroid ultrasound. In the thyroid ultrasound images, the ROI was set to a size of 50x50 pixels, and 21 parameters and 4 angles were used with GLCM to analyze the normal thyroid patterns and thyroid nodule patterns. The analyzed data was used to distinguish between normal and nodule diagnostic results using the SVM model and KNN model in MATLAB. As a result, the accuracy of the thyroid nodule classification rate was 94% for SVM model and 91% for the KNN model. Both models showed an accuracy of over 90%, indicating that the classification rate is excellent when using machine learning for the classification of normal thyroid and thyroid nodules. In the ROC curve, the ROC curve for the SVM model was generally higher compared to the KNN model, indicating that the SVM model has higher within-sample performance than the KNN model. Based on these results, the SVM model showed high accuracy in diagnosing thyroid nodules. This result can be used as basic data for future research as an auxiliary tool for medical diagnosis and is expected to contribute to the qualitative improvement of medical services through machine learning technology.
Communications for Statistical Applications and Methods
/
v.17
no.2
/
pp.275-292
/
2010
Receiver operating characteristic(ROC) curves can be used to assess the accuracy of tests measured on ordinal or continuous scales. The most commonly used measure for the overall diagnostic accuracy of diagnostic tests is the area under the ROC curve(AUC). When two ROC curves are constructed based on two tests performed on the same individuals, statistical analysis on differences between AUCs must take into account the correlated nature of the data. This article focuses on confidence interval estimation of the difference between paired AUCs. We compare nonparametric, maximum likelihood, bootstrap and generalized pivotal quantity methods, and conduct a monte carlo simulation to investigate the probability coverage and expected length of the four methods.
Journal of the Korean Data and Information Science Society
/
v.25
no.3
/
pp.473-483
/
2014
Even though the ROC manifold for more than three dimensional space which is an extension of the ROC curve and surface has difficulty to represent graphically, the hypervolume under the ROC manifold (HUM) statistic can be defined and obtained based on AUC and VUS measures for the ROC curve and the ROC surface. Hence the definition and characteristics of the HUM for four dimensional space are studied in this work. By extension of the standard criterion of AUC for probabilities of default based on Basel II, the 13 classes of standard criterion of HUM are proposed in order to discriminate four classification models and some application methods are discussed. In order to explore the standard criterion of HUM whose values are obtained from various distributions, ternary plot is used and explained.
In this study, the relationship between natural gas (NG) data and gas-related environmental elements was performed using machine learning algorithms to predict the level of gas leakage risk without directly measuring gas leakage data. The study was based on open data provided by the server using the IoT-based remote control Picarro gas sensor specification. The naturel gas leaks into the air, it is a big problem for air pollution, environment and the health. The proposed method is multivariate outlier removing method based Random Forest (RF) classification for predicting risk of NG leak. After, unsupervised k-means clustering, the experimental dataset has done imbalanced data. Therefore, we focusing our proposed models can predict medium and high risk so best. In this case, we compared the receiver operating characteristic (ROC) curve, accuracy, area under the ROC curve (AUC), and mean standard error (MSE) for each classification model. As a result of our experiments, the evaluation measurements include accuracy, area under the ROC curve (AUC), and MSE; 99.71%, 99.57%, and 0.0016 for MOL_RF respectively.
From the point view of credit evaluation whose population is divided into the default and non-default state, two methods are considered to estimate conditional distribution functions: one is to estimate under the assumption that the data is followed the mixture normal distribution and the other is to use the kernel density estimation. The parameters of normal mixture are estimated using the EM algorithm. For the kernel density estimation, five kinds of well known kernel functions and four kinds of the bandwidths are explored. In addition, the corresponding ROC functions are obtained based on the estimated distribution functions. The goodness-of-fit of the estimated distribution functions are discussed and the performance of the ROC functions are compared. In this work, it is found that the kernel distribution functions shows better fit, and the ROC function obtained under the assumption of normal mixture shows better performance.
KSCE Journal of Civil and Environmental Engineering Research
/
v.37
no.4
/
pp.669-680
/
2017
This study evaluated the consistency of the standard flow to forecast low-flow based on various drought indices. The data used in this study were streamflow data at the Gurye2 station located in the Seomjin River and the Angang station located in the Hyeongsan River, as well as rainfall data of nearby weather stations (Namwon and Pohang). Using streamflow data, the streamflow accumulation drought index (SADI) was developed in this study to represent the hydrological drought condition. For SADI calculations, the threshold of drought was determined by a Change-Point analysis of the flow pattern and a reduction factor was estimated based on the kernel density function. Standardized runoff index (SRI) and standardized precipitation index (SPI) were also calculated to compared with the SADI. SRI and SPI were calculated for the 30-, 90-, 180-, and 270-day period and then an ROC curve analysis was performed to determine the appropriate time-period which has the highest consistency with the standard flow. The result of ROC curve analysis indicated that for the Seomjin River-Gurye2 station SADI_C3, SRI30, SADI_C1, SADI_C2, and SPI90 were confirmed in oder of having high consistency with standard flow under the attention stage and for the Hyeongsan River-Angang station, SADI_C3, SADI_C1, SPI270, SRI30, and SADI_C2 have order of high consistency with standard flow under the attention stage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.