References
- Dreiseitl, S., Ohno-Machado, L. and Binder, M. (2000). Comparing three-class diagnostic tests by three-way ROC analysis. Medical Decision Making, 20, 323-331. https://doi.org/10.1177/0272989X0002000309
- Fawcett, T. (2003). ROC graphs: Notes and practical considerations for data mining researchers, HP Labs Tech Report HPL-2003-4, HP Laboratories, http://www.hpl.hp.com/techreports/2003/.
- Heckerling, P. S. (2001). Parametric three-way receiver operating characteristic surface analysis using mathematica. Medical Decision Making, 21, 409-417. https://doi.org/10.1177/02729890122062703
- Hong, C. S., Jung, E. S. and Jung, D. G. (2013). Standardized criterion of VUS for ROC surface. The Korean Journal of Applied Statistics, 26, 977-985. https://doi.org/10.5351/KJAS.2013.26.6.977
- Hosmer, D. W. and Lemeshow, S. (2000). Applied logistic regression, John Wiley & Sons, New York.
- Li, J. and Fine, J. P. (2008). ROC analysis with multiple classes and multiple tests: Methodology and its application in microarray studies. Biostatistics, 9, 566-576. https://doi.org/10.1093/biostatistics/kxm050
- Joseph, M. P. (2005). A PD validation framework for Basel II internal ratings-based systems. Quantitative Analyst Basel II Project, Commonwealth Bank of Australia.
- Mossman, D. (1999). Three-way ROCs. Medical Decision Making, 19, 78-89. https://doi.org/10.1177/0272989X9901900110
- Nakas, C. T. and Yiannoutsos, C. T. (2004). Ordered multiple-class ROC analysis with continuous measurements. Statistics in Medicine, 23, 3437-3449. https://doi.org/10.1002/sim.1917
- Nakas, C. T., Alonzo, T. A. and Yiannoutsos, C. T. (2010). Accuracy and cut off point selection in three class classification problems using a generalization of the Youden index. Statistics in Medicine, 29, 2946-2955. https://doi.org/10.1002/sim.4044
- Patel, A. C. and Markey, M. K. (2005). Comparison of three-class classification performance metrics: A case study in breast cancer CAD. International Society for Optical Engineering, 5749, 581-589.
- Scurfield, B. K. (1996). Multiple-event forced-choice tasks in the theory of signal detectability. Journal of Mathematical Psychology, 40, 253-269. https://doi.org/10.1006/jmps.1996.0024
- Wandishin, M. S. and Mullen, S. J. (2009). Multiclass ROC analysis. Weather and Forecasting, 24, 530-547. https://doi.org/10.1175/2008WAF2222119.1
- Wilkie, A. D. (2004). Measures for comparing scoring systems. In Readings in Credit Scoring, edited by L.C. Thomas, D.B. Edelman, and J.N. Crook, Oxford University Press, Oxford.
- Zachos, C. K. (2012). Ternary plots for neutrino mixing visualization. ANL-HEP-PR-12-31, arXiv:1205.4772v3 [hep-ph].
- Zou, K. H., O'Malley, A. J. and Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115, 654-657. https://doi.org/10.1161/CIRCULATIONAHA.105.594929
Cited by
- Proposition of polytomous discrimination index and test statistics vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.337
- VUS and HUM Represented with Mann-Whitney Statistic vol.22, pp.3, 2015, https://doi.org/10.5351/CSAM.2015.22.3.223
- Parameter estimation for the imbalanced credit scoring data using AUC maximization vol.29, pp.2, 2016, https://doi.org/10.5351/KJAS.2016.29.2.309
- ROC curve and AUC for linear growth models vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1367
- Parameter estimation of linear function using VUS and HUM maximization vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1305
- Test Statistics for Volume under the ROC Surface and Hypervolume under the ROC Manifold vol.22, pp.4, 2015, https://doi.org/10.5351/CSAM.2015.22.4.377
- Discriminant analysis using empirical distribution function vol.28, pp.5, 2017, https://doi.org/10.7465/jkdi.2017.28.5.1179