• 제목/요약/키워드: RNase R

검색결과 28건 처리시간 0.03초

Species-Specific Cleavage by RNase E-Like Enzymes in 5S rRNA Maturation

  • RYOU SANG-MI;KIM JONG-MYUNG;YEOM JI-HYUN;KIM HYUN-LI;GO HA-YOUNG;SHIN EUN-KYOUNG;LEE KANGSEOK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1100-1105
    • /
    • 2005
  • Previous work has identified a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that exhibits the endoribonucleolytic cleavage specificity characteristic of RNase E and confers viability on and allows the propagation of E. coli cells lacking RNase E. Here, we identify a putative S. coelicolor 9S rRNA sequence and sites cleaved by RNase ES. The cleavage of the S. coelicolor 9S rRNA transcript by RNase ES resulted in a 5S rRNA precursor (p5S) that had four and two additional nucleotides at the 5' end and 3' ends of the mature 5S rRNA, respectively. However, despite the similarities between RNase E and RNase ES, these enzymes could accurately process 9S rRNA from just their own bacteria, indicating that these ancient enzymes and the rRNA segments that they attack appear to have co-evolved.

Saccharomyces uvarum의 Catabolic Repression 시기에 유도되는 Ribosomal Ribonuclease에 대한 연구 (Induction of Ribosomal Ribonuclease during Catabolic Repression in Saccharomyces uvarum)

  • 윤성녀;이기성;최영길
    • 한국균학회지
    • /
    • 제14권3호
    • /
    • pp.201-207
    • /
    • 1986
  • 효모 세포(S. uvarum)를 재료로 하여 배양 시기 및 sugar starvation시기에 특이하게 출현 또는 유도되는 RNase의 localization과 특성을 조사하고자 하였다. 정상 배양 시기 및 sugar starvation시킨 효모 세포를 세포 분획구에 따라 RNase 활성도를 측정하는 한편 ribosome 양의 변화를 조사하였다. 특히 ribosomal 분획구에서 추출한 RNase들을 poly(C)와 반응시킨 후 생성물을 TLC에 적응하여 효소의 특성 및 유도 여부를 조사하였다. 그 결과를 요약하면 다음과 같다. 세포 분획구 중 $45,000{\times}g$ pellet 분획구 및 Postribomosal 분획구에서는 배양 시기나 sugar starvation에 관계없이 RNase의 활성도는 유의하게 증감하지 않았으나, ribosomal 분회구에서는 정체기와 sugar starvation시 활성도가 각각 2배, 10배 이상 급격히 증가하였다. ribosome의 양적 동태를 살펴보면 early log phase의 세포에 비하여, 정체기 세포와 sugar starvation시킨 세포에서는 $1/3{\sim}1/6$까지 급격히 감소하였다. TLC의 결과 rRNase의 종류는 early log phase에서는 oligonuclease와 3'-ribonuclease, 5'-ribonuclease,stationarf phase에서는 oligonuclease, 3'-ribonuclease, sugar starvation 시켰을 때는 3'-ribonuclease, 5'-ribonuclease의 활성이 나타났다. 그리고 완전 배지를 사용한 효모 세포에서는 공통적으로 oligonuclease의 활성이 나타난 반면, sugar starvation시킨 효모 세포에서는 oligonuclease의 활성은 나타나지 않았다.

  • PDF

Gibbrellic Acid와 Abscisic Acid가 보리 초엽(?葉)의 핵산(核酸) 및 핵산분해효소(核酸分解酵素)에 미치는 영향(影響) (The Effect of Gibbrellic Acid and Abscisic Acid on Ribonucleic Acid and Ribonuclease in Barley Coleoptiles)

  • 서용택
    • Applied Biological Chemistry
    • /
    • 제20권2호
    • /
    • pp.242-246
    • /
    • 1977
  • 보리(Hordeum vulgare cultivar Sedohadaka)초엽에 $1{\times}10^{-5}M$ Gibbrellic acid 및 $1{\times}10^{-5}M$ Abscisic acid를 처리(處理)하여 RNase활성(活性)의 경시적(經時的) 소장(消長)을 무처리구(無處理區)와 비교(比較)하고, 핵산(核酸)의 형태(形態)를 관찰하였으며 그 결과(結果)를 요약(要約)하면 다음과 같다. 1) GA는 RNase의 활성(活性)을 억제(抑制)시키는 반면(反面)ABA는 촉진(促進)시켰다. 2) 무처리구(無處理區)에서 정상적인 식물(植物)에 비(比)하여 r-RNA의 비(比)가 낮고 r-RNA의 비(比)가 높았는데 이것은 배양(培養)중 RNase의 작용(作用)에 의한 것 같다. 3) GA는 r-RNA의 분해(分解)를 완화시켰으나 ABA는 촉진(促進)시켰는데 이것은 RNase의 활성(活性)과 관계된 것 같다. 4) GA는 DNA-RNA 복합체(複合體)의 합성(合成)을 촉진(促進)시켰으나 ABA는 이를 억제시켰다. 5) ABA에 의한 s-RNA의 증가(增加)는 r-RNA의 분해산물(分解産物) 때문이라 생각된다.

  • PDF

Whole-mount in situ Hybridization of Mitochondrial rRNA and RNase MRP RNA in Xenopus laevis Oocytes

  • Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • 제2권4호
    • /
    • pp.529-538
    • /
    • 1998
  • In order to analyze the intracellu1ar localization of specific RNA components of ribonucleoproteins (RNP) in Xenopus oocytes, a modified protocol of whole-mount in situ Hybridization is presented in this paper, Mitochondria specific 12S rRNA probe was used to detect the amplification and distribution of mitochondria in various stages of the oocyte life cycle, and the results were found to be consistent with previously known distribution of mitochondria. The results with other specific probes (U1 and U3 small nuclear RNAs, and 5S RNA) also indicate that this procedure is generally effective in localizing RNAs in RNP complexes even inside organelles. In addition, the RNA component of RNase MRP, the RNP with endoribo-nuclease activity, localize to the nucleus in various stages of the oocyte life cycle. Some of MRP RNA, however, were found to be localized to the special population of mitochondria near the nucleus, especially in the active stage of mitochondrial amplification. It suggests dual localization of RNase MRP in the nucleus and mitochondria, which is consistent with the proposed roles of RNase MRP in mitochondrial DNA replication and in rRNA processing in the nucleolus.

  • PDF

PURIFICATION AND PROPERTIES OF EXTRACELLULAR NUCLEASE(S) FROM RUMEN CONTENTS OF BUBALUS BUBALIS

  • Sinha, P.R.;Dutta, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제3권2호
    • /
    • pp.115-120
    • /
    • 1990
  • Extracellular nuclease(s) in buffalo rumen fluid were purified from strained rumen fluid by a procedure involving Seitz filtration, acetone fractionation and gel filtration on Sephadex G-100. The enzyme resolved into two peaks exhibiting both DNase and RNase activities. The molecular weight of enzyme corresponding to peaks I and II were approximately 30,000 and 12,000 respectively. The properties of enzymes from the two peaks, however, were same. Optimum temperature for both DNase and RNase activities was at $50^{\circ}C$. Whereas DNase activity was stable upto $60^{\circ}C$, RNase activity was stable only up to $50^{\circ}C$. DNase activity recorded two pH optima, one at pH 5.5 and the other at pH 7.0. RNase activity recorded a broad pH optimum between pH 6.0-8.0. pH stability of the enzyme coincided with pH optima for both the activities. DNase activity was stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. RNase activity was also stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. Reducing agents stimulated both the activities.

잠란(蠶卵)의 초기발육과정(初期發育過程)에 따르는 RNase활성(活性) 및 핵산량(核酸量)의 변동(變動) 및 그 X선조사(線照射)에 의한 영향(影響)에 관(關)한 연구(硏究) (Variation of RNase activities and nucleic acid content of non-irradiated and irradiated eggs of Bombyx mori during early development of embryo)

  • 이기영;전형원
    • Applied Biological Chemistry
    • /
    • 제15권2호
    • /
    • pp.163-168
    • /
    • 1972
  • Previously identified female pupae were X-irradiated with a dose of 1000r one day prior to moth transformation. Female mothes from irradiated and non-irradiated pupae were copulated with normal male ones and allowed to lay eggs. Fertilized eggs were collected at 6 intervals such as 5, 15, 45, 90 minutes, 12 and 40 hours after laying, and deep-freezed immediately after each collection until measurements. RNase activity and nucleic acid content were determined with each sample and following results were obtained. 1) It was proved to exist two RNases in silk worm eggs as in mammalian tissues, one active maximally at pH 5.8 and the other at pH 8.0, and the acid RNase activity was much higher than that of alkaline RNase. 2) The activity of acid and alkaline RNases increased remarkably during early development of the embryo of silk worm eggs, reaching the maximum activity at 45 minutes from laying time in non-irradiated group. There was no appreciable difference in two RNase activities for 45 minutes after laying in both control and irradiated groups, but the activity of acid and alkaline RNases in latter group was three times as much as that in former group, at 90 minutes from laying time and it was also found the acid RNase activity was 1.8 times higher than alkaline one in irradiated group. 3) The RNA-P content of control group increased considerably for initial 45 minutes, followed by a decline 45 minutes later with sight but steady increase thereafter. The RNA-P content of irradiated group, however, increased at initial 5 minutes, followed by a marked fall 90 minutes after laying, with no change thereafter. The DNA-P of control group showed a sharp increase for initial 45 minutes, followed by a decline 45 minutes later with no appreciable change thereafter, whereas that of irradiated group showed an increase at initial 15 minutes, followed by a sharp decline for following 45 minutes with a gradual increase thereafter. It was thus proved that the synthesis of nucleic acid in silk worm eggs was much suppressed by X-irradiation during early development of embryo. 4) The RNase activity varied in parallel with the RNA-P content in control group, but the RNA-P content in irradiated group was shown to be minimum value in concidence with the maximum activity of both RNases.

  • PDF

Escherichia coli 리보핵산 내부분해효소 RNase E의 돌연변이체 선별 및 특성분석 (Identification and Functional Analysis of Escherichia coli RNase E Mutants)

  • 신은경;고하영;김영민;주세진;이강석
    • 미생물학회지
    • /
    • 제43권4호
    • /
    • pp.325-330
    • /
    • 2007
  • 대장균의 필수적인 리보핵산 내부분해효소인 RNase E는세포내에서 여러 RNA의 분해와 가공과정에서 중요한 역할을 하며, 이 단백질의 효소활성부위를 포함하는 N-말단부위의 498 아미노산(N-Rne)만의 발현으로도 세포의 생장을 가능하게 한다. 이러한 RNase E의 특성을 활용하여 다양한 표현형을 가지는 N-Rne 돌연변이체들을 분리, 동정할 수 있는 효율적인 유전학적 시스템을 개발하였다. 이 시스템을 이용하여 얻어진 효소활성부위 돌연변이체들을 표현형으로 분류하여 분석한 결과, S1 도메인의 6번째 아미노산의 치환(I6T)을 가진 변이체는 야생형 N-Rne의 기능을 대체하지 못하였고, Small 도메인의 488번째 아미노산의 치환(R488C)을 가진 변이체는 야생형 N-Rne의 발현양보다 현저히 작게 발현시켜도 세포의 생장을 정상적으로 가능하게 하였다. 또한 DNase I 도메 인의 305번째 아미노산의 치환(N305D)을 가진 변이체는 야생형 N-Rne의 발현양보다 과발현시켰을 때만 세포의 생장을 가능하게 하였다. 각각의 아미노산 치환을 포함하는 N-Rne를 한정적으로 과발현시켰을 때의 ColEl-타입 플라스미드의 복제 수에 대한 영향을 측정한 결과, 돌연변이체 N-Rne의 세포생장에 대한 영향은 이 변이체들의 세포 내 효소활성 정도에 기인하는 것으로 밝혀졌다. 이러한 실험결과는 이 연구에서 개발한 유전학적 시스템을 이용하여 다양한 표현형을 가진 RNase E 변이체를 선별할 수 있으며, 이 변이체들의 특성을 분석함으로써 RNase E가 RNA의 안정성을 조절하는데 있어서 각각의 세부 도메인의 역할을 규명할 수 있으리라는 것을 시사한다.

Enzymatic activity of Endoplasmic Reticulum Oxidoreductin 1 from Bombyx mori

  • Park, Kwanho;Yun, Eun-Young;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권1호
    • /
    • pp.15-20
    • /
    • 2018
  • Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (ERO1s) supply oxidizing equivalent to the active centers of PDI. We previously identified and characterized the ERO1 of Bombyx mori (bERO1) as a thioredoxin-like protein that shares primary sequence homology with other ERO1s. Here we compare the reactivation of inactivated rRNase and sRNase by bERO1, and show that bERO1 and bPDI cooperatively refold denatured RNase A. This is the first result suggesting that bERO1 plays an essential role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein folding in the ER and sustaining cellular redox homeostasis.

Baculovirus Expression and Biochemical Characterization of the Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제7권2호
    • /
    • pp.127-131
    • /
    • 2003
  • Protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found to be associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. A cDNA that encodes protein disulfide isomerase was previously isolated from Bombyx mori (bPDI), in which open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal, and we report its functional characterization here. This putative bPDI cDNA is expressed in insect Sf9 cells as a recombinant proteins using baculovirus expression vector system. The bPDI recombinant proteins are successfully recognized by antirat PDI antibody, and shown to be biologically active in vitro by mediating the oxidative refolding of reduced and scrambled RNase. This suggests that bPDI may play an important role in protein folding mechanism of insects.

Detection of Cleavage Sites on 5S rRNA by Methidiumpropyl-EDTA-Iron(II)

  • Kim, Sang-Bumn;Cho, Bong-Rae;Lee, Young-Hoon;Park, In-Won
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.133-136
    • /
    • 1996
  • The affinity cleavage reagent Methidiumpropyl-EDTA-Iron(II) is applied to the structural analysis of 5S rRNA. Analysis of cleavage sites induced by MPE-Fe(II) on 5S rRNA shows that MPE intercalates easily between the unstable base pairs or into the bulges, thereby it strongly cuts the nucleosides nearby. The stable helical stems A, B, D and E as well as loop d are weakly cut. Most of the single-stranded loops are not cleaved. Based on the cleavage pattern of the 5S rRNA by MPE-Fe(II) and RNase V1, we suggest that MPE-Fe(II) may be used as a potential chemical probe in searching for the unstable helical regions of RNA, and for the sequences that appear to be involved in folding and distorting 5S rRNA.

  • PDF