• 제목/요약/키워드: RNG k-${\varepsilon}$

검색결과 90건 처리시간 0.021초

CFD 모형을 이용한 3차원 비대칭 도로 협곡에서의 흐름 및 오염물질 분산 연구 (An Investigation of Flow and Pollutant Dispersion in Three-Dimensional Asymmetric Street Canyons Using a CFD Model)

  • 박승부;백종진
    • 한국대기환경학회지
    • /
    • 제23권2호
    • /
    • pp.214-224
    • /
    • 2007
  • A three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence model is used to examine the effects of difference in building height on flow and pollutant dispersion in asymmetric street canyons. Three numerical experiments with different street canyons formed by two isolated buildings are performed. In the experiment with equal building height, a portal vortex is formed in the street canyon and a typical recirculation zone is formed behind the downwind building. In the experiment with the downwind building being higher than the upwind building, the ambient flow comes into the street canyon at the front of the downwind building and incoming flow diverges strongly in the street canyon. Hence, pollutants released therein are strongly dispersed through the lateral sides of the street canyon. In the experiment with the upwind building being higher than the downwind building, a large recirculation zone is formed behind the upwind building, which is disturbed by the downwind building. Pollutants are weakly dispersed from the street canyon and the residue concentration ratio is largest among the three experiments. This study shows that the difference in upwind and downwind building height significantly influences flow and pollutant dispersion in and around the street canyon.

On the domain size for the steady-state CFD modelling of a tall building

  • Revuz, J.;Hargreaves, D.M.;Owen, J.S.
    • Wind and Structures
    • /
    • 제15권4호
    • /
    • pp.313-329
    • /
    • 2012
  • There have existed for a number of years good practice guidelines for the use of Computational Fluid Dynamics (CFD) in the field of wind engineering. As part of those guidelines, details are given for the size of flow domain that should be used around a building of height, H. For low-rise buildings, the domain sizes produced by following the guidelines are reasonable and produce results that are largely free from blockage effects. However, when high-rise or tall buildings are considered, the domain size based solely on the building height produces very large domains. A large domain, in most cases, leads to a large cell count, with many of the cells in the grid being used up in regions far from the building/wake region. This paper challenges this domain size guidance by looking at the effects of changing the domain size around a tall building. The RNG ${\kappa}-{\varepsilon}$ turbulence model is used in a series of steady-state solutions where the only parameter varied is the domain size, with the mesh resolution in the building/wake region left unchanged. Comparisons between the velocity fields in the near-field of the building and pressure coefficients on the building are used to inform the assessment. The findings of the work for this case suggest that a domain of approximately 10% the volume of that suggested by the existing guidelines could be used with a loss in accuracy of less than 10%.

축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가 (Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery)

  • 이공희;백제현
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

스파이럴 제트 유동에 미치는 축소노즐 각도의 영향 (The Effect of Convergent Nozzle Angle on a Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

이상 회체가스 가중합산모델을 적용한 미분탄 연소의 수치적 연구 (Numerical Study on Pulverized Coal Combustion Applying Two-Phase WSGGM)

  • 유명종;강신재;백승욱
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1368-1379
    • /
    • 2000
  • A numerical study on swirling pulverized coal combustion in an axisymmetric enclosure is carried out by applying the 2-phase weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard and RNG k-${\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase. The eddy-dissipation model is employed for the reaction rate for gaseous mixture, and the single-step and two-step first-order reaction model for the devolatilization process for coal. Special attention is given to establish the thermal boundary conditions on radiative transfer equation By comparing the numerical results with experimental ones, the radiation model used here is confirmed and found to provide an alternative for simulating the radiative transfer.

버스형상 무딘물체의 공력특성에 관한 수치해석적 고찰 - 난류모델과 이산화법의 영향 - (A Numerical Study on the Aerodynamic Characteristics of a Bus-Like Bluff Body - Effect of Turbulence Model and Discretisation Scheme -)

  • 김민호;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.115-123
    • /
    • 2003
  • With the advent of high performance computers and more efficient numerical algorithms, computational fluid dynamics(CFD) has come out as a modem alternative for reducing the use of wind tunnels test in automotive engineering. However, in spite of the fact that many competent researchers have made all their talents in developing turbulence model over since the past dozen or more years, it has been an important impediment in using the CFD effectively to design machinery and to diagnose or to improve engineering problems in the industry since the turbulence model has been acting as the Achilles' tendon in aspect of the reliability even to this time. In this study, Reynolds-averaged Wavier-Stokes equations were solved to simulate an incompressible turbulent flow around a bus-like bluff body near ground plane. In order to investigate the effect of the discretisation schemes and turbulence model on the aerodynamic forces several turbulence models with five convective difference schemes are adopted. From the results of this study, it is clear that choice of turbulence model and discretisation scheme profoundly affects the computational outcome. The results also show that the adoption of RNG $k-\varepsilon$ turbulence model and nonlinear quadratic turbulence model with the second order accurate discretisation scheme predicts fairly well the aerodynamic coefficients.

에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구 (A Numerical Study On Various Energy and Environmental Systems)

  • 장동순;송우영;나혜령;박병수;이은주;김복순
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.160-168
    • /
    • 1995
  • This paper describes computational efforts on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, aerator-induced flow in a lake for DO(dissolved oxygen) concentration, primary clarifier for water and waste water treatment, hood ventilation in workplace, cyclone and LNG combustors and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or the RNG $k-{\varepsilon}$ models. Turbulent reaction is modeled using two fast chemistry methods such as eddy breakup and conserved scalar models. Further, a nonequilibrium model is developed for the application of the chlorination process in the Dow reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal condition of various engineering system of interest.

  • PDF

범용 열/유체 유동해석 프로그램 NUFLEX의 개발 (DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX)

  • 허남건;원찬식;유홍선;손기헌;김사량
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.8-13
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG $k-{\varepsilon}$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray models. For the purpose of evaluation of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법 (Modeling of CNG Direct Injection using Gaseous Sphere Injection Model)

  • 최민기;박성욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

대형 트럭 코너베인 주위의 공력특성에 관한 3차원 수치해석 (Three-Dimensional Numerical Study on the Aerodynamic Characteristics around Corner Vane in Heavy-Duty Truck)

  • 김민호;정우인
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.181-189
    • /
    • 2000
  • The aerodynamic characteristics of large transport vehicle has become more and more important in recent vehicle design to improve driving performance in high speed cruising and raise the product valve with regard to a comfortable driving condition. Hence, detailed knowledge of the flow field around truck coner vane is essential to improve fuel efficiency and reduce the dirt contamination on vehicle body surface. In this study, three-dimensional flow characteristics around corner vane attached to truck cabin were computed for the steady, incompressible, and high speed viscous flow, adopting the RNG k-$\varepsilon$ turbulence model. In order to investigate the influence of configuration and structure of corner vane, computations were carried out for four cases at a high Reynolds number, Re=4.1$\times$106 (based on the cabin height). The global flow patterns, drag coefficient and the distributions such as velocity magnitude, turbulent kinetic energy around the corner vane, were examined. As a result of this study, we could identify the flow characteristics around corner vane for the variation of corner vane length and width. Also, suggest the improved structure to reduce the dirt contamination in cabin side.

  • PDF