• Title/Summary/Keyword: RNA therapeutics

Search Result 289, Processing Time 0.029 seconds

Cytokine Inductions and Intracellular Signal Profiles by Stimulation of dsRNA and SEB in the Macrophages and Epithelial Cells

  • Jun-Pyo Choi;Purevsuren Losol;Ghazal Ayoub;Mihong Ji;Sae-Hoon Kim;Sang-Heon Cho;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.16
    • /
    • 2022
  • Foreign molecules, including viruses and bacteria-derived toxins, can also induce airway inflammation. However, to the best of our knowledge, the roles of these molecules in the development of airway inflammation have not been fully elucidated. Herein, we investigated the precise role and synergistic effect of virus-mimicking double-stranded RNA (dsRNA) and staphylococcal enterotoxin B (SEB) in macrophages and epithelial cells. To identify cytokine expression profiles, both the THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA or SEB. A total of 21 cytokines were evaluated in the culture supernatants. We observed that stimulation with dsRNA induced cytokine production in both cell types. However, cytokine production was not induced in SEB-stimulated epithelial cells, compared to the macrophages. The synergistic effect of dsRNA and SEB was evaluated observing cytokine level and intracellular phospho-signaling. Fifteen different types were detected in high-dose dsRNA-stimulated epithelial cells, and 12 distinct types were detected in macrophages; those found in macrophages lacked interferon production compared to the epithelial cells. Notably, a synergistic effect of cytokine induction by co-stimulation of dsRNA and SEB was observed mainly in epithelial cells, via activation of most intracellular phosphor-signaling. However, macrophages only showed an accumulative effect. This study showed that the type and severity of cytokine productions from the epithelium or macrophages could be affected by different intensities and a combination of dsRNA and SEB. Further studies with this approach may improve our understanding of the development and exacerbation of airway inflammation and asthma.

Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Choi, Joon-Seok;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.

Expression of Taurine Transporter in Cell Lines and Murine Organs (세포주와 마우스 조직에서 타우린수송체의 발현분석)

  • 김하원;안희창;안혜숙;현진원;이은방
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.78-84
    • /
    • 2002
  • Taurine (2-ethaneaminosulfonic acid, $^+{NH}_3{CH_2}{CH_2}{SO_3^{-}}$) is endogenous amino acid with functions as modulator of osmoregulation, antioxidation, detoxification, transmembrane calcium transport, and a free radical scavenger in mammalian tissues. Taurine transporter(TAUT) contains 12 transmembrane helices, which are typical of the $Na^+$- and $Cl^-$-dependent transporter gene family, and has been cloned recently from several species and tissues. To analyze the expression of TAUT mRNA, one step RT-PCR was performed from human and mouse cultured cell lines and from various mouse tissues. The primers were designed to encode highly conserved amino acid sequences at the second transmembrane domain and at the fourth and fifth intracellular domains. RT-PCR analysis showed both of the human intestine HT-29 and mouse macrophage RAW264.7 cell lines expressed mRNA of TAUT. To define the expression patterns of the TAUT mRNA in the murine organs, RT-PCR was performed to detect cDNA representing TAUT mRNA from seven different mouse tissues. The TAUT was detected in all of the mouse tissues analyzed such as heart, lung, thymus, kidney, liver, spleen and brain. A large amount of transcript was fecund from heart, liver, spleen, kidney, and brain, while lung contained a very small amount of transcript.

Chemoprotective Effect of Methanol Extract of Hedera rhombea Loaves on the Reversal of Cytochrome P-450 Activities Induced by Carbon Tetrachloride (사염화탄소로 유도된 Cytochrome P-450 활성도의 전환으로 본 Hedera rhombea 잎의 메탄올 추출물의 간독성 감소작용)

  • 홍영숙;김형래;배영숙;박상신
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.245-250
    • /
    • 1995
  • The carbon tetrachloride($CCl_4$) has been demonstrated to have a hepatotoxic effect in human or many other species. To investigate the enzyme induction of mixed function oxygenases in liver of male Sprague-Dawley rats a single 0.1, 0.5 mι/kg dose of carbon tetrachloride were given. At 24 hr after a single dose of 0.1 mι CC1$_4$/kg weight, methanol extract of Hedera rhombea leaves was administered with 100, 500 mg/kg weight. Assays of 7-ethoxyresorufin-Ο-deethylation(EROD),7-benzyloxyresorufin-Ο-deathylation(BROD),4-nitro-phenol-UDP-glucuronosyltransferase(UDPGT), Western blot and RNA slot blot were used as representatives of the activities of cytochrome P-450 enzymes. The change of the activity of CYP1A1 form measured by EROD assay and Western analysis using 1-7-1 monoclonal antibody was not observed. The activity CYP2B1 form by BROD assay and using 2-66-3 monoclonal antibody was remarkably increased. Elevated level of CYP2B1 mRNA was shown by slot hybridization with 2B1-specific probe. Administration of methanol extract of Hedera rhombea leaves reversed the enzyme activity and the level of mRNA, which suggest the chemoprotective effect of methanol extracts of Hedera rhombea leaves to carbon tetrachloride hepatotoxlcity.

  • PDF

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.

Effects of Alpha 1- and Alpha 2-Adrenoreceptor Stimulation on Galanin mRNA Expression in Primary Cultured Superior Cervical Ganglion Neurons

  • Xing, Yi;Chen, Xiuying;Liu, Zhen;Li, Hao;Liu, Huaxiang;Li, Zhenzhong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.315-319
    • /
    • 2011
  • Galanin (Gal) is a 29-amino-acid neuropeptide which is expressed in superior cervical ganglion (SCG) neurons and plays a trophic role in the adult animal and acts as an inhibitory modulator of cholinergic and noradrenergic neurotransmission. Whether activation or inhibition of alpha-adrenoreceptors infl uences Gal mRNA expression in SCG neurons remains unknown. Here, we have evaluated the possible regulation of Gal mRNA expression with acute (4 h) and chronic (4 days) stimulation of alpha 1- and alpha 2-adrenoreceptor agonists or antagonists in primary cultured SCG neurons. The results showed that the amount of Gal mRNA expression in cultured SCG neurons increased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor antagonist yohimbine compared with control SCG neurons at the same time point, whereas the amount of Gal mRNA expression decreased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor agonist clonidine as compared with that in control group. All these effects were not dose-dependent on the administration of alpha 2-adrenoreceptor agonist clonidine or alpha 2-adrenoreceptor antagonist yohimbine. Alpha 1-adrenoreceptor agonist phenylephrine or antagonist prazosin chronic stimulation did not have effects on Gal mRNA expression. Acute exposure of these agents did not have effects on Gal mRNA expression. The present study showed that Gal may be regulated by activation or inhibition of alpha 2-adrenoreceptors, but not alpha 1-adrenoreceptors in sympathetic neurons.

Inhibition of the Interleukin-11-STAT3 Axis Attenuates Hypoxia-Induced Migration and Invasion in MDA-MB-231 Breast Cancer Cells

  • Lim, Ji-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.391-396
    • /
    • 2014
  • Although interleukin-11 (IL-11) has been reported to be elevated in hypoxic tumors and has been associated with a poor prognosis in various cancers, little is known about its precise role in promoting metastasis in hypoxic tumors. In the present study, the molecular mechanism underlying the effects of IL-11 on MDA-MB-231 breast cancer cells migration and invasion in relation to metastasis under hypoxic conditions has been defined. Inhibition of IL-11 expression or function using small interfering RNA (siRNA) or a neutralizing antibody attenuated hypoxic MDA-MB-231 breast cancer cell migration and invasion through down-regulation of matrix metalloproteinases (MMPs) and activation of epithelial-to-mesenchymal transition (EMT) related gene expression. In addition, hypoxia-induced IL-11 increased STAT3 phosphorylation and STAT3 knockdown suppressed hypoxic MDA-MB-231 breast cancer cell invasion due to reduced MMP levels and reprogrammed EMT-related gene expression. These results suggest that one of the hypoxic metastasis pathways and the regulation of this pathway could be a potential target for novel cancer therapeutics.

Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Joo, Sang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • There are many cyclic peptides with diverse biological activities, such as antibacterial activity, immunosuppressive activity, and anti-tumor activity, and so on. Encouraged by natural cyclic peptides with biological activity, efforts have been made to develop cyclic peptides with both genetic and synthetic methods. The genetic methods include phage display, intein-based cyclic peptides, and mRNA display. The synthetic methods involve individual synthesis, parallel synthesis, as well as split-and-pool synthesis. Recent development of cyclic peptide library based on split-and-pool synthesis allows on-bead screening, in-solution screening, and microarray screening of cyclic peptides for biological activity. Cyclic peptides will be useful as receptor agonist/antagonist, RNA binding molecule, enzyme inhibitor and so on, and more cyclic peptides will emerge as therapeutic agents and biochemical tools.

Repeated Morphine Administration Increases TRPV1 mRNA Expression and Autoradiographic Binding at Supraspinal Sites in the Pain Pathway

  • Nguyen, Thi-Lien;Nam, Yun-Son;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.328-333
    • /
    • 2022
  • Repeated morphine administration induces tolerance to its analgesic effects. A previous study reported that repeated morphine treatment activates transient receptor potential vanilloid type 1 (TRPV1) expression in the sciatic nerve, dorsal root ganglion, and spinal cord, contributing to morphine tolerance. In the present study, we analyzed TRPV1 expression and binding sites in supraspinal pain pathways in morphine-tolerant mice. The TRPV1 mRNA levels and binding sites were remarkably increased in the cortex and thalamus of these animals. Our data provide additional insights into the effects of morphine on TRPV1 in the brain and suggest that changes in the expression of, and binding to TRPV1 in the brain are involved in morphine tolerance.