DOI QR코드

DOI QR Code

Repeated Morphine Administration Increases TRPV1 mRNA Expression and Autoradiographic Binding at Supraspinal Sites in the Pain Pathway

  • Nguyen, Thi-Lien (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Nam, Yun-Son (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Seok-Yong (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
  • Received : 2022.01.26
  • Accepted : 2022.04.29
  • Published : 2022.07.01

Abstract

Repeated morphine administration induces tolerance to its analgesic effects. A previous study reported that repeated morphine treatment activates transient receptor potential vanilloid type 1 (TRPV1) expression in the sciatic nerve, dorsal root ganglion, and spinal cord, contributing to morphine tolerance. In the present study, we analyzed TRPV1 expression and binding sites in supraspinal pain pathways in morphine-tolerant mice. The TRPV1 mRNA levels and binding sites were remarkably increased in the cortex and thalamus of these animals. Our data provide additional insights into the effects of morphine on TRPV1 in the brain and suggest that changes in the expression of, and binding to TRPV1 in the brain are involved in morphine tolerance.

Keywords

Acknowledgement

This study was supported by grants from the Korea Food and Drug Administration (22214MFDS251), Republic of Korea.

References

  1. Bao, Y., Gao, Y., Yang, L., Kong, X., Yu, J., Hou, W. and Hua, B. (2015) The mechanism of mu-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 9, 235-243. https://doi.org/10.1080/19336950.2015.1069450
  2. Bohlen, C. J., Priel, A., Zhou, S., King, D., Siemens, J. and Julius, D. (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141, 834-845. https://doi.org/10.1016/j.cell.2010.03.052
  3. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. and Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824. https://doi.org/10.1038/39807
  4. Chen, S. R. and Pan, H. L. (2006) Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia. J. Neurophysiol. 95, 3086-3096. https://doi.org/10.1152/jn.01343.2005
  5. Chen, S. R., Prunean, A., Pan, H. M., Welker, K. L. and Pan, H. L. (2007) Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience 145, 676-685. https://doi.org/10.1016/j.neuroscience.2006.12.016
  6. Chen, Y., Geis, C. and Sommer, C. (2008) Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J. Neurosci. 28, 5836-5845. https://doi.org/10.1523/JNEUROSCI.4170-07.2008
  7. Cichewicz, D. L. and Welch, S. P. (2003) Modulation of oral morphine antinociceptive tolerance and naloxone-precipitated withdrawal signs by oral Delta 9-tetrahydrocannabinol. J. Pharmacol. Exp. Ther. 305, 812-817. https://doi.org/10.1124/jpet.102.046870
  8. Colvin, L. A., Bull, F. and Hales, T. G. (2019) Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet 393, 1558-1568. https://doi.org/10.1016/S0140-6736(19)30430-1
  9. Cui, M., Honore, P., Zhong, C., Gauvin, D., Mikusa, J., Hernandez, G., Chandran, P., Gomtsyan, A., Brown, B., Bayburt, E. K., Marsh, K., Bianchi, B., McDonald, H., Niforatos, W., Neelands, T. R., Moreland, R. B., Decker, M. W., Lee, C. H., Sullivan, J. P. and Faltynek, C. R. (2006) TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 26, 9385-9393. https://doi.org/10.1523/JNEUROSCI.1246-06.2006
  10. Dostrovsky, J. O. (2000) Role of thalamus in pain. Prog. Brain Res. 129, 245-257. https://doi.org/10.1016/S0079-6123(00)29018-3
  11. Fatemi, I., Hadadianpour, Z., Fatehi, F., Shamsizadeh, A., Hasanshahi, J., Abbasifard, M. and Kaeidi, A. (2019) The role of locus coeruleus nucleus TRPV1 receptors in the development and expression of morphine dependence. Iran. J. Basic Med. Sci. 22, 1186-1191.
  12. Gardell, L. R., Wang, R., Burgess, S. E., Ossipov, M. H., Vanderah, T. W., Malan, T. P., Jr., Lai, J. and Porreca, F. (2002) Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J. Neurosci. 22, 6747-6755. https://doi.org/10.1523/jneurosci.22-15-06747.2002
  13. Hakim, M. A., Jiang, W., Luo, L., Li, B., Yang, S., Song, Y. and Lai, R. (2015) Scorpion toxin, BmP01, induces pain by targeting TRPV1 channel. Toxins (Basel) 7, 3671-3687. https://doi.org/10.3390/toxins7093671
  14. Hernandez-Garcia, E. and Rosenbaum, T. (2014) Lipid modulation of thermal transient receptor potential channels. Curr. Top. Membr. 74, 135-180. https://doi.org/10.1016/B978-0-12-800181-3.00006-3
  15. Hong, S. I., Nguyen, T. L., Ma, S. X., Kim, H. C., Lee, S. Y. and Jang, C. G. (2017) TRPV1 modulates morphine-induced conditioned place preference via p38 MAPK in the nucleus accumbens. Behav. Brain Res. 334, 26-33. https://doi.org/10.1016/j.bbr.2017.07.017
  16. Hutchinson, M. R., Coats, B. D., Lewis, S. S., Zhang, Y., Sprunger, D. B., Rezvani, N., Baker, E. M., Jekich, B. M., Wieseler, J. L., Somogyi, A. A., Martin, D., Poole, S., Judd, C. M., Maier, S. F. and Watkins, L. R. (2008) Proinflammatory cytokines oppose opioidinduced acute and chronic analgesia. Brain Behav. Immun. 22, 1178-1189. https://doi.org/10.1016/j.bbi.2008.05.004
  17. Kest, B. and Hopkins, E. (2001) Morphine tolerance after chronic intracerebroventricular injection in male and female mice. Brain Res. 892, 208-210. https://doi.org/10.1016/S0006-8993(00)03301-1
  18. King, T., Gardell, L. R., Wang, R., Vardanyan, A., Ossipov, M. H., Malan, T. P., Jr., Vanderah, T. W., Hunt, S. P., Hruby, V. J., Lai, J. and Porreca, F. (2005) Role of NK-1 neurotransmission in opioidinduced hyperalgesia. Pain 116, 276-288. https://doi.org/10.1016/j.pain.2005.04.014
  19. Kolesnikov, Y. A., Jain, S., Wilson, R. and Pasternak, G. W. (1996) Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J. Pharmacol. Exp. Ther. 279, 502-506.
  20. Leavens, M. E., Hill, C. S., Jr., Cech, D. A., Weyland, J. B. and Weston, J. S. (1982) Intrathecal and intraventricular morphine for pain in cancer patients: initial study. J. Neurosurg. 56, 241-245. https://doi.org/10.3171/jns.1982.56.2.0241
  21. Liao, M., Cao, E., Julius, D. and Cheng, Y. (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-112. https://doi.org/10.1038/nature12822
  22. Ma, S. X., Kim, H. C., Lee, S. Y. and Jang, C. G. (2018) TRPV1 modulates morphine self-administration via activation of the CaMKII-CREB pathway in the nucleus accumbens. Neurochem. Int. 121, 1-7. https://doi.org/10.1016/j.neuint.2018.10.009
  23. Ma, W., Zheng, W. H., Kar, S. and Quirion, R. (2000) Morphine treatment induced calcitonin gene-related peptide and substance P increases in cultured dorsal root ganglion neurons. Neuroscience 99, 529-539. https://doi.org/10.1016/S0306-4522(00)00226-8
  24. Madrid, J. L., Fatela, L. V., Lobato, R. D. and Gozalo, A. (1987) Intrathecal therapy: rationale, technique, clinical results. Acta Anaesthesiol. Scand. Suppl. 85, 60-67.
  25. Melkes, B., Markova, V., Hejnova, L. and Novotny, J. (2020) beta-Arrestin 2 and ERK1/2 are important mediators engaged in close cooperation between TRPV1 and micro-opioid receptors in the plasma membrane. Int. J. Mol. Sci. 21, 4626. https://doi.org/10.3390/ijms21134626
  26. Merskey, H. (1994) Logic, truth and language in concepts of pain. Qual. Life Res. Suppl 1, S69-76.
  27. Ness, T. J. and Follett, K. A. (1998) The development of tolerance to intrathecal morphine in rat models of visceral and cutaneous pain. Neurosci. Lett. 248, 33-36. https://doi.org/10.1016/S0304-3940(98)00327-9
  28. Nguyen, T. L., Kwon, S. H., Hong, S. I., Ma, S. X., Jung, Y. H., Hwang, J. Y., Kim, H. C., Lee, S. Y. and Jang, C. G. (2014) Transient receptor potential vanilloid type 1 channel may modulate opioid reward. Neuropsychopharmacology 39, 2414-2422. https://doi.org/10.1038/npp.2014.90
  29. Nguyen, T. L., Nam, Y. S., Lee, S. Y., Kim, H. C. and Jang, C. G. (2010) Effects of capsazepine, a transient receptor potential vanilloid type 1 antagonist, on morphine-induced antinociception, tolerance, and dependence in mice. Br. J. Anaesth. 105, 668-674. https://doi.org/10.1093/bja/aeq212
  30. Pasternak, G. W. and Pan, Y. X. (2013) Mu opioids and their receptors: evolution of a concept. Pharmacol. Rev. 65, 1257-1317. https://doi.org/10.1124/pr.112.007138
  31. Paxinos, G. and Franklin, K. B. J. (2004) The Mouse Brain in Stereotaxic Coordinates, Compact. 2nd ed. Elsevier Academic Press, Amsterdam; Boston.
  32. Rahman, A. F., Takahashi, M. and Kaneto, H. (1994) Involvement of pain associated anxiety in the development of morphine tolerance in formalin treated mice. Jpn. J. Pharmacol. 65, 313-317. https://doi.org/10.1254/jjp.65.313
  33. Roberts, J. C., Davis, J. B. and Benham, C. D. (2004) [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res. 995, 176-183. https://doi.org/10.1016/j.brainres.2003.10.001
  34. Rowan, M. P., Bierbower, S. M., Eskander, M. A., Szteyn, K., Por, E. D., Gomez, R., Veldhuis, N., Bunnett, N. W. and Jeske, N. A. (2014) Activation of mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1) via beta-arrestin-2-mediated cross-talk. PLoS ONE 9, e93688. https://doi.org/10.1371/journal.pone.0093688
  35. Scherer, P. C., Zaccor, N. W., Neumann, N. M., Vasavda, C., Barrow, R., Ewald, A. J., Rao, F., Sumner, C. J. and Snyder, S. H. (2017) TRPV1 is a physiological regulator of mu-opioid receptors. Proc. Natl. Acad. Sci. U.S.A. 114, 13561-13566. https://doi.org/10.1073/pnas.1717005114
  36. Starowicz, K., Cristino, L. and Di Marzo, V. (2008) TRPV1 receptors in the central nervous system: potential for previously unforeseen therapeutic applications. Curr. Pharm. Des. 14, 42-54. https://doi.org/10.2174/138161208783330790
  37. Stucky, C. L., Gold, M. S. and Zhang, X. (2001) Mechanisms of pain. Proc. Natl. Acad. Sci. U.S.A. 98, 11845-11846. https://doi.org/10.1073/pnas.211373398
  38. Szallasi, A. and Di Marzo, V. (2000) New perspectives on enigmatic vanilloid receptors. Trends Neurosci. 23, 491-497. https://doi.org/10.1016/S0166-2236(00)01630-1
  39. Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I. and Julius, D. (1998) The cloned capsaicin receptor integrates multiple painproducing stimuli. Neuron 21, 531-543. https://doi.org/10.1016/s0896-6273(00)80564-4
  40. Toth, A., Boczan, J., Kedei, N., Lizanecz, E., Bagi, Z., Papp, Z., Edes, I., Csiba, L. and Blumberg, P. M. (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res. Mol. Brain Res. 135, 162-168. https://doi.org/10.1016/j.molbrainres.2004.12.003
  41. Whalen, E. J., Rajagopal, S. and Lefkowitz, R. J. (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol. Med. 17, 126-139. https://doi.org/10.1016/j.molmed.2010.11.004
  42. Yaksh, T. L. (1997) Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol. Scand. 41, 94-111. https://doi.org/10.1111/j.1399-6576.1997.tb04623.x
  43. Yang, S., Yang, F., Wei, N., Hong, J., Li, B., Luo, L., Rong, M., YarovYarovoy, V., Zheng, J., Wang, K. and Lai, R. (2015) A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat. Commun. 6, 8297. https://doi.org/10.1038/ncomms9297
  44. Yeung, J. C. and Rudy, T. A. (1980) Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine. J. Pharmacol. Exp. Ther. 215, 633-642.
  45. Younger, J., Barelka, P., Carroll, I., Kaplan, K., Chu, L., Prasad, R., Gaeta, R. and Mackey, S. (2008) Reduced cold pain tolerance in chronic pain patients following opioid detoxification. Pain Med. 9, 1158-1163. https://doi.org/10.1111/j.1526-4637.2008.00475.x
  46. Yu, L. (1996) Protein kinase modulation of mu opioid receptor signalling. Cell. Signal. 8, 371-374. https://doi.org/10.1016/0898-6568(96)00070-8
  47. Yue, X., Tumati, S., Navratilova, E., Strop, D., St John, P. A., Vanderah, T. W., Roeske, W. R., Yamamura, H. I. and Varga, E. V. (2008) Sustained morphine treatment augments basal CGRP release from cultured primary sensory neurons in a Raf-1 dependent manner. Eur. J. Pharmacol. 584, 272-277. https://doi.org/10.1016/j.ejphar.2008.02.013