• 제목/요약/키워드: RNA sequencing analysis

검색결과 625건 처리시간 0.024초

Polymerase Chain Reaction 방법에 의한 Halobacteria gvp 유전자의 역전사 및 증폭 (Reverse Transcription and Amplification of Halobacterial gvp Genes with Polymerase Chain Reaction Method)

  • 윤병수;이상섭
    • 미생물학회지
    • /
    • 제30권6호
    • /
    • pp.456-459
    • /
    • 1992
  • Halobacteria 의 gvpD. gvpE 유전자는 가스포 형성에 관여하는 유전자로, 이들은 그 transcripts 의 분석에 있어 특유의 연약성 때문에 많은 실험상의 문제를 야기시키고 있다. 본 실험은 연약한 mRNA 를 reverse transcriptase 를 사용, DNA 로 바꾸고 이를 다시 PCR(Polymerase Chain Reaction) 방법으로 증폭시킴으로써, 유전자의 연약한 mRNA 를 다시 상보적인 안정한 DNA 로 대치케 하여 RNA 상의 cloning, RNA sequencing 을 용이하게 하였다. 결과는 유전자 gvpD 에서 거의 전 ORF(Open Reading Frame) 의 범위에서 northern hybridization 에서 발견치 못한 transcipts 를 확인할 수 있었다.

  • PDF

SNP Discovery from Transcriptome of Cashmere Goat Skin

  • Wang, Lele;Zhang, Yanjun;Zhao, Meng;Wang, Ruijun;Su, Rui;Li, Jinquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권9호
    • /
    • pp.1235-1243
    • /
    • 2015
  • The goat Capra hircus is one of several economically important livestock in China. Advances in molecular genetics have led to the identification of several single nucleotide variation markers associated with genes affecting economic traits. Validation of single nucleotide variations in a whole-transcriptome sequencing is critical for understanding the information of molecular genetics. In this paper, we aim to develop a large amount of convinced single nucleotide polymorphisms (SNPs) for Cashmere goat through transcriptome sequencing. In this study, the transcriptomes of Cashmere goat skin at four stages were measured using RNA-sequencing and 90% to 92% unique-mapped-reads were obtained from total-mapped-reads. A total of 56,231 putative SNPs distributed among 10,057 genes were identified. The average minor allele frequency of total SNPs was 18%. GO and KEGG pathway analysis were conducted to analyze the genes containing SNPs. Our follow up biological validation revealed that 64% of SNPs were true SNPs. Our results show that RNA-sequencing is a fast and efficient method for identification of a large number of SNPs. This work provides significant genetic resources for further research on Cashmere goats, especially for the high density linkage map construction and genome-wide association studies.

Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods

  • Yeonjae Ryu;Geun Hee Han;Eunsoo Jung;Daehee Hwang
    • Molecules and Cells
    • /
    • 제46권2호
    • /
    • pp.106-119
    • /
    • 2023
  • With the increased number of single-cell RNA sequencing (scRNA-seq) datasets in public repositories, integrative analysis of multiple scRNA-seq datasets has become commonplace. Batch effects among different datasets are inevitable because of differences in cell isolation and handling protocols, library preparation technology, and sequencing platforms. To remove these batch effects for effective integration of multiple scRNA-seq datasets, a number of methodologies have been developed based on diverse concepts and approaches. These methods have proven useful for examining whether cellular features, such as cell subpopulations and marker genes, identified from a certain dataset, are consistently present, or whether their condition-dependent variations, such as increases in cell subpopulations in particular disease-related conditions, are consistently observed in different datasets generated under similar or distinct conditions. In this review, we summarize the concepts and approaches of the integration methods and their pros and cons as has been reported in previous literature.

Trimming conditions for DADA2 analysis in QIIME2 platform

  • Lee, Seo-Young;Yu, Yeuni;Chung, Jin;Na, Hee Sam
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.146-153
    • /
    • 2021
  • Accurate identification of microbes facilitates the prediction, prevention, and treatment of human diseases. To increase the accuracy of microbiome data analysis, a long region of the 16S rRNA is commonly sequenced via paired-end sequencing. In paired-end sequencing, a sufficient length of overlapping region is required for effective joining of the reads, and high-quality sequencing reads are needed at the overlapping region. Trimming sequences at the reads distal to a point where sequencing quality drops below a specific threshold enhance the joining process. In this study, we examined the effect of trimming conditions on the number of reads that remained after quality control and chimera removal in the Illumina paired-end reads of the V3-V4 hypervariable region. We also examined the alpha diversity and taxa assigned by each trimming condition. Optimum quality trimming increased the number of good reads and assigned more number of operational taxonomy units. The pre-analysis trimming step has a great influence on further microbiome analysis, and optimized trimming conditions should be applied for Divisive Amplicon Denoising Algorithm 2 analysis in QIIME2 platform.

단일 세포 RNA 시퀀싱 데이터에 대한 컴퓨터 분석의 작업과정 (The Workflow for Computational Analysis of Single-cell RNA-sequencing Data)

  • 우성훈;정병출
    • 대한임상검사과학회지
    • /
    • 제56권1호
    • /
    • pp.10-20
    • /
    • 2024
  • RNA-시퀀싱은 표본에 대한 전사체 전체의 패턴을 제공하는 기법이다. 그러나 RNA-시퀀싱은 표본 내 전체 세포에 대한 평균 유전자 발현만 제공할 수 있으며, 표본 내의 이질성(heterogeneity)에 대한 정보는 제공하지 못한다. 단일 세포 RNA-시퀀싱 기술의 발전을 통해 우리는 표본의 단일 세포 수준에서 이질성과 유전자 발현의 동역학(dynamics)에 대한 이해를 할 수 있게 되었다. 예를 들어, 우리는 단일 세포 RNA-시퀀싱을 통해 복잡한 조직을 구성하는 다양한 세포 유형을 식별할 수 있으며, 특정 세포 유형의 유전자 발현 변화와 같은 정보를 알 수 있다. 단일 세포 RNA-시퀀싱은 처음 도입된 이후 많은 이들의 관심을 끌게 되었으며, 이를 활용하기 위한 대규모 생물정보학(bioinformatics) 도구가 개발되었다. 그러나 단일 세포 RNA-시퀀싱에서 생성된 빅데이터 분석에는 데이터 전처리에 대한 이해와 전처리 이후 다양한 분석 기술에 대한 이해가 필요하다. 본 종설에서는 단일 세포 RNA-시퀀싱 데이터분석과 관련된 작업과정의 개요를 제시한다. 먼저 데이터의 품질 관리, 정규화 및 차원 감소와 같은 데이터의 전 처리 과정에 대해 설명한다. 그 이후, 가장 일반적으로 사용되는 생물정보학 도구를 활용한 데이터의 후속 분석에 대해 설명한다. 본 종설은 이 분야에 관심이 있는 새로운 연구자를 위한 가이드라인을 제공하는 것을 목표로 한다.

Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts

  • Park, Jeong-Woong;Lee, Jeong Hyo;Kim, Seo Woo;Han, Ji Seon;Kang, Kyung Soo;Kim, Sung-Jo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권9호
    • /
    • pp.1507-1515
    • /
    • 2018
  • Objective: In the poultry industry, the most important economic traits are meat quality and carcass yield. Thus, many studies were conducted to investigate the regulatory pathways during muscle differentiation. To gain insight of muscle differentiation mechanism during growth period, we identified and validated calcium-related genes which were highly expressed during muscle differentiation through mRNA sequencing analysis. Methods: We conducted next-generation-sequencing (NGS) analysis of mRNA from undifferentiated QM7 cells and differentiated QM7 cells (day 1 to day 3 of differentiation periods). Subsequently, we obtained calcium related genes related to muscle differentiation process and examined the expression patterns by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results: Through RNA sequencing analysis, we found that the transcription levels of six genes (troponin C1, slow skeletal and cardiac type [TNNC1], myosin light chain 1 [MYL1], MYL3, phospholamban [PLN], caveolin 3 [CAV3], and calsequestrin 2 [CASQ2]) particularly related to calcium regulation were gradually increased according to days of myotube differentiation. Subsequently, we validated the expression patterns of calcium-related genes in quail myoblasts. These results indicated that TNNC1, MYL1, MYL3, PLN, CAV3, CASQ2 responded to differentiation and growth performance in quail muscle. Conclusion: These results indicated that calcium regulation might play a critical role in muscle differentiation. Thus, these findings suggest that further studies would be warranted to investigate the role of calcium ion in muscle differentiation and could provide a useful biomarker for muscle differentiation and growth.

Major histocompatibility complex genes exhibit a potential immunological role in mixed Eimeria-infected broiler cecum analyzed using RNA sequencing

  • Minjun Kim;Thisarani Kalhari Ediriweera;Eunjin Cho;Yoonji Chung;Prabuddha Manjula;Myunghwan Yu;John Kariuki Macharia;Seonju Nam;Jun Heon Lee
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.993-1000
    • /
    • 2024
  • Objective: This study was conducted to investigate the differential expression of the major histocompatibility complex (MHC) gene region in Eimeria-infected broiler. Methods: We profiled gene expression of Eimeria-infected and uninfected ceca of broilers sampled at 4, 7, and 21 days post-infection (dpi) using RNA sequencing. Differentially expressed genes (DEGs) between two sample groups were identified at each time point. DEGs located on chicken chromosome 16 were used for further analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was conducted for the functional annotation of DEGs. Results: Fourteen significant (false discovery rate <0.1) DEGs were identified at 4 and 7 dpi and categorized into three groups: MHC-Y class I genes, MHC-B region genes, and non-MHC genes. In Eimeria-infected broilers, MHC-Y class I genes were upregulated at 4 dpi but downregulated at 7 dpi. This result implies that MHC-Y class I genes initially activated an immune response, which was then suppressed by Eimeria. Of the MHC-B region genes, the DMB1 gene was upregulated, and TAP-related genes significantly implemented antigen processing for MHC class I at 4 dpi, which was supported by KEGG pathway analysis. Conclusion: This study is the first to investigate MHC gene responses to coccidia infection in chickens using RNA sequencing. MHC-B and MHC-Y genes showed their immune responses in reaction to Eimeria infection. These findings are valuable for understanding chicken MHC gene function.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

효모 탐색을 위한 Pyrolysis Mass Spectrometry의 활용 (Application of Pyrolysis Mass Spectrometry on Yeast Screening)

  • 신기선;신용국;권오유;이상한
    • 생명과학회지
    • /
    • 제11권1호
    • /
    • pp.19-23
    • /
    • 2001
  • To develop the effective microbial screening method, pyrolysis mass spectrometry (PyMS) fingerprinting was evaluated as a tool that discriminate various yeast strains. The target yeast strains were isolated from industrial wastewater. Seventeen environmental isolated yeast strains were examined by pyrolysis mass spectrometry and sequencing analysis of the large subunit rRNA gene D1/D2 region. The PyMS results were compared with those of sequencing analysis. Taxonomic correlations were observed between the PyMS data and the sequencing results. It was concluded that PyMS provides a rapid, reliable and cost-reducing method for discrimination of the yeast strains.

  • PDF

RNA-sequencing Profiles of Cell Cycle-Related Genes Upregulated during the G2-Phase in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • 제57권2호
    • /
    • pp.185-189
    • /
    • 2019
  • To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.